cho a+b+c=2010 và 1/a+b+1/b+c+1/c+a=1/10 tính giá trị của biểu thức a=a/b+c+b/c+a+c/a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)
Từ a+b+c=2010
\(\Rightarrow\)a= 2010-(b+c)
\(\Rightarrow\)b= 2010-(c+a)
\(\Rightarrow\)c= 2010-(a+b)
Thay vào A, ta được:
A=\(\frac{2010-\left(b+c\right)}{b+c}\)+ \(\frac{2010-\left(c+a\right)}{c+a}\) + \(\frac{2010-\left(a+b\right)}{a+b}\)
A= \(\frac{2010}{b+c}\)+ \(\frac{2010}{c+a}\)+\(\frac{2010}{a+b}\)- 3
A= 2010( \(\frac{1}{b+c}\)+\(\frac{1}{c+a}\)+\(\frac{1}{a+b}\) ) -3
A= 2010. \(\frac{1}{10}\)-3
A=201-3
A= 198
Vậy A=198
Bài làm :
Vì :
\(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy A=-1
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3