Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Mà \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=-\frac{c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy \(A=-1\)
Chúc bạn học tốt !!!
A=a+b/b.b+c/c.c+a/a
mà a+b+c =0
=> a+b=-c ; b+c=-a ; c+a=-b
thay vào A được:A= -c/b.-a/c.-b/a=-abc/abc=-1
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Ta có: a - b - c = 0
=> \(\hept{\begin{cases}a-c=b\\a-b=c\\-b-c=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-\left(a-b\right)=-c\\-\left(b+c\right)=-a\end{cases}}\Rightarrow\hept{\begin{cases}a-c=b\\-a+b=-c\\b+c=a\end{cases}}\)
Lại có: \(P=\left(1-\frac{c}{a}\right)\left(1-\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\)
\(\Rightarrow P=\frac{a-c}{a}.\frac{b-a}{b}.\frac{c+b}{c}=\frac{b}{a}.\frac{-c}{b}.\frac{a}{c}=-1\)
Bạn ơi! ABC khác 0 thì làm sao ạ+b+c=0 được bạn
Bài làm :
Vì :
\(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy A=-1