Chứng minh rằng trong một tam giác, nếu trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo link : https://hoc24.vn/cau-hoi/chung-minh-rang-trong-mot-tam-giac-neu-trung-tuyen-ung-voi-mot-canh-bang-mot-nua-canh-ay-thi-tam-giac-do-la-tam-giac-vuong.334426537652
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra; BC=AD
=>AM=BC/2
1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp.
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC
=> AO là đường trung tuyến ứng với cạnh huyền
=> OA = OB =OC = 1/2 BC
=> O là tâm của đường tròn ngoại tiếp tam giác ABC
Vậy ....
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác.
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC
=>OA = OB =OC (*)
mà BC là đường kính của đường tròn ngoại tiếp
=> O là trung điểm BC
=> OB = OC = 1/2 BC(**)
từ (*) và (**) => OA = OB = OC = 1/2 BC
=> tam giác ABC vuông tại A
@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?
mot tam giac co do dai cach canh la 34dm chu vi tam giac do la
Do \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta ABM\) cân tại M
\(\Rightarrow\widehat{B}=\widehat{A_1}\) \(\left(1\right)\)
Do \(MA=MC\left(gt\right)\)
\(\Rightarrow\Delta AMC\) cân tại M
\(\Rightarrow\widehat{A_2}=\widehat{C}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}=\widehat{BAC}\)
Mà \(\widehat{B}+\widehat{C}+\widehat{BAC}=180^o\)(Tổng ba góc trong một tam giác)
\(\Rightarrow\widehat{B}+\widehat{C}=\widehat{BAC}=\dfrac{180^o}{2}=90^o\)
Do đó \(\Delta ABC\) vuông tại A
#Sahara |
Trên tia đối của tia MA lấy điểm n sao cho MA=NA.
Xét ΔABMΔABM và ΔNCMΔNCM có:
AM = AN ( theo cách lấy điểm N)
AMB = NMC ( đối đỉnh)
MB = MC (GT)
⇒ΔABM=ΔNCM(c.g.c)⇒AB=NC⇒ΔABM=ΔNCM(c.g.c)⇒AB=NC
Ta có : MA = 1/2 AN; mà MA = 1/2 BC
Suy ra: AN = BC
Xét ΔABCΔABC và ΔCNAΔCNA CÓ:
AB = NC ( cmt)
AC chung
BC = AN (cmt)
⇒ΔABC=ΔNAC(c.c.c)⇒BAC=NCA⇒ΔABC=ΔNAC(c.c.c)⇒BAC=NCA
mà ABM=MCN ( vì t/g ABM = t/g NCM)
Suy ra ; AB//CN
⇒BAC+NC
Cho mình bổ sung từ cái phần " =>" ở cuối cùng ý là :
Suy ra ; AB//CN
⇒BAC+NCA=180O⇒BAC+NCA=180O (hai góc trong cùng phía)
=> 2.BAC = 180O
=> BAC= 90O
Do dó t/g BAC vuông tại A
Vậy trong một tam giác,nếu trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông