Cho tam giác ABC, M thuộc AC sao cho AM=MC=1/3. Lấy điểm O trên BM sao cho OM/OB=2/3. Nối A với O cắt BC tại N.
a) Tính các tỉ số CN/NB và AO/ON.
b) Xác định vị trí của điểm P trên AB sao cho BM, AN, CP đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM=MC => AM là đường trung tuyến của tam giác ABC
AN=NB => CN là đường trung tuyến của tam giác ABC
AM cắt CN tại O => O là trọng tâm của tam giác ABC => \(AO=\frac{2}{3}AM=\frac{2}{3}.24=16\left(cm\right)\)
Nối B với O
SOCM = SOMB (BM = MC ; chung đường cao hạ từ O)
SCNB = SACN (AN = NB ; chung đường cao hạ từ C) .
SONB = SAON . SAON = \(\frac{1}{2}\)SABC - SONMB. SOMC = \(\frac{1}{2}\)SABC - SONMB
=> SAON = SOMC ; SOMC = \(\frac{1}{6}\)SABC và SACO
=> độ dài đoạn OA = \(24\times\left(\frac{1}{2}+\frac{1}{6}\right)=16\left(cm\right)\)