K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)

\(\Rightarrow S=ab+2009\ge2007\)

Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2

* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1

19 tháng 5 2017

2a² + b²/4 + 1/a² = 4 
⇔ 8a⁴ + a²b² + 4 = 16a² 
⇔ a²b² = -8a⁴ + 16a² - 4 
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4 
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4 
⇔ │ab│ ≤ 2 
⇔ -2 ≤ ab ≤ 2 

--> A = ab + 2011 ≥ 2009 

Dấu " = " xảy ra ⇔ 
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1 
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2 

NM
9 tháng 8 2021

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

16 tháng 10 2020

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai