CMR:Nếu a+c=2b và 2bd=c(b+d) thì a/b=c/d với b,d khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2bd=c\left(b+d\right)\)
\(\Rightarrow\left(a+c\right).d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Thay a+c=2b vào 2bd=c(b+d)
=> (a+c)d=c(b+d)=> ad+cd=bc+cd => ad=bc \(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)
đặt a+c vào 2bd ta có (a+c)d = c(b+d) <=> ad+ cd = bc + cd <=> ad = bc <=> a/ b = c/ d
(thay a+c vào 2bd vì a+c = 2b )
d(a+c)=2bd=c(b+d)
Suy ra ad+dc=cb+cd
ad=cb
Ta suy ra được a/b=c/d
a + c =2b ( 1 )
2bd = c(b+d) ( 2)
từ (1) và (2) ta được:
( a+ c ) .d = c.( b + d )
theo tính chất phân phối ta có"
ad + cd = cb + cd
=> ad = cb => a/b = c/d
k mknhes
Ta có: 2bd = c(b + d)
=> (a + c).d = bc + cd
=> ad + cd = bc + cd
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : 2bd = c (b + d )
=) ( a + c ). d = bc + cd
=) ad + cd = bc + cd
=) ad = bc
=) a/b = c/ d ( đpcm)
Ta có: \(2bd=c\left(b+d\right)\)
a+c=2b
Do đó: \(d\left(a+c\right)=c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{c-a-c}{d-b-d}=\dfrac{-a}{-b}=\dfrac{a}{b}\)
hay \(\dfrac{a}{b}=\dfrac{c}{d}\)(đpcm)
Lời giải:
Vì $a+c=2b\Rightarrow d(a+c)=2bd$
Mà $2bd=c(b+d)$ nên $d(a+c)=c(b+d)$
$\Leftrightarrow ad+cd=bc+cd$
$\Leftrightarrow ad=bc\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.