K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))

AC là đường kính của (O)(gt)

Do đó: ΔAEC vuông tại E(Định lí)

\(\Rightarrow\)AE\(\perp\)EC tại E

\(\Rightarrow\)AE\(\perp\)BE tại E

hay \(\widehat{AEB}=90^0\)

Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)

nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)

Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)

nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)

\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)

b)

Ta có: EA\(\perp\)EB(cmt)

nên \(EA\perp EH\) tại E

Xét ΔEHB có \(EA\perp EH\) tại E(cmt)

nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)

Ta có: ΔEHB vuông tại E(cmt)

mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)

nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)

nên EI=IH=IB

Ta có: IH=IE(cmt)

nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)

hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)

c) Ta có: \(AE\perp EC\) tại E(cmt)

nên \(AE\perp BC\) tại E

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))

AC là đường kính của (O)(gt)

Do đó: ΔADC vuông tại D(Định lí)

\(\Rightarrow CD\perp AD\) tại D

hay \(CD\perp BA\) tại D

Xét ΔBAC có 

AE là đường cao ứng với cạnh BC(cmt)

CD là đường cao ứng với cạnh BA(cmt)

AE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

\(\Rightarrow\)BH là đường cao ứng với cạnh AC

hay \(BH\perp AC\)(đpcm)

4 tháng 10 2022

 bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?

3 tháng 11 2020

Ớ thế phần C làm như thế nào

a: góc BDC=góc BEC=90 độ

=>CD vuông góc AB, BE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

 

12 tháng 2 2017

AB không nhất thiết phải nhỏ hơn AC nhé các bác

12 tháng 2 2017

em sửa chỗ kia chút cắt AB tại D, AC tại E

23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)