K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)

Vậy số dư của \(3^{2021}\) cho 13 là 9.

b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)

Vậy số dư của $2008^{2008}$ cho $7$ là $1.$

P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.

  1. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaâ
      
      
      
14 tháng 12 2017

câu hỏi của cậu tớ chẳng hiểu cái gì cậu làm bài giải cho tớ với ?

25 tháng 5 2023

Sử dụng đồng dư thức em nhé.

S = 12008 + 22008 + 32008 + 42008

S = 1 + (25)401.23 + (35)401.33 + (45)401.43

S = 1 + 32401. 8 + 243401. 27 + 1024401. 64

32 \(\equiv\) -1 (mod 11) ⇒32401.8 \(\equiv\) -8 (mod 11) (1)

243 \(\equiv\) 1 (mod 11); 27 \(\equiv\) 5 (mod 11)  \(\Rightarrow\) 243401.27 \(\equiv\) 5 (mod 11) (2)

1024 \(\equiv\) 1 (mod 11); 64 \(\equiv\) 9 (mod 11) \(\Rightarrow\) 1024401.64 \(\equiv\) 9 (mod 11) (3)

Kết hợp (1); (2); (3) ta có:

\(\equiv\) 1 - 8 + 5 + 9 (mod 11)

\(\equiv\) 7 (mod 11)

Vậy S khi chia 11 dư 7

 

 

3 tháng 9 2016

KẾT QUẢ : 998605886490

SỐ DƯ : 88

3 tháng 9 2016

xắp sĩ 9,986

7 tháng 10 2021

\(2021\equiv1\left(mod5\right)\\ \Leftrightarrow2021^{2022}\equiv1^{2022}=1\left(mod5\right)\\ \Leftrightarrow2021^{2022}+3\equiv1+3=4\left(mod5\right)\)

Vậy phép chia có dư là 4