tìm x,y,z biết: 3x=4y=5z và 2x+y=z-43
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Từ 4+x/7+y=4/7
=>7(4+x)=4(7+x)
28+7x=28+4y
=>7x=4y
Vì x+y=22=>x=22-y
Nên 7(22-x)=4y
154-7y=4y
11y=154
y=14 =>x=8
b. Từ x/3=y/4 và y/5=z/6
=>x/15=x/20=z/24 (1)
Từ (1):ta có 2x/30=3y/60=4z/96=2x+3y+4z/186(2)
Ta lại có:3x/45=4y/80=5z/120=3x+4y+5z/245(3)
Từ (2) và (3):2x+3y+4z/3x+4y+5z=186/245
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\\ 4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{x+y-z}{15+10-8}=\dfrac{78}{17}\\ \Rightarrow x=\dfrac{78}{17}.15=...\\ y=\dfrac{78}{17}.10=\dfrac{780}{17}\\ z=\dfrac{78}{10}.8=...\)
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)
Ta có : 2X= 3Y = 5Z => 2X/30 = 3Y/30 = 5Z/30 => X/15 =Y/10 = Z/6
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
X/15=Y/10=Z/6 = X-Y+Z/15 - 10 - 6 = 33/11 = 3
X/15 = 3 => X = 45
Y/10 = 3 => Y = 30
Z/6 = 3 => Z =18