K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

a. Gọi giao điểm của AK và BN là Q

Ta có: 

ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘

Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘

ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)

⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^

Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)

⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘

⇒ˆAQM=90∘⇒AQM^=90∘

Hay AK vuông góc với BN.

b. Theo câu a: AK vuông góc với BN tại Q

Mà BQ là phân giác của góc ˆIBKIBK^ 

Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B

Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.

Chứng minh tương tự: Q là trung điểm của MN

Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK

Vậy MINK là hình thoi.

22 tháng 11 2017

Tớ chịu

khó qua toán lớp 8 chết mất

xin lỗi bn nha !

2 tháng 10 2018

Tự vẽ hình

Xét hai tam giác ADB\((\widehat{ADB}=90^O)\) và AEC\((\widehat{AEC=90^O)}\) có:

AB = AC (do tam giác ABC cân tại A)

\(\widehat{A}\):góc chung

=>Tam giác ADB=tam giác AEC (...)

=>AD=AE ( hai cạnh tương ứng )




 

a: Xét ΔABC vuông tại A có AD là đường cao

nên \(AD^2=BD\cdot CD\)

b: \(CB=\sqrt{3^2+4^2}=5\left(cm\right)\)

AD=3*4/5=2,4cm

c: BI là phân giác

=>DI/IA=DB/BA

AK là phân giác

=>DK/KC=DA/AC

mà DB/BA=DA/AC

nên DI/IA=KD/KC

=>KI//AC

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

29 tháng 3 2016

gócDCB=gócEBC=góc1/2ACB=góc1/2ABC

a)xét tg DCB và tg EBC có

BC là cạnh  chung

góc B=góc C

góc DCB=góc EBC

suy ra  tg DCB = tg EBC(g.c.g)

suy ra CD=BE(hai cạnh tương ứng)

xét tgADC và tgAEB có 

góc A là góc chung là góc vuông

AB=AC

DC=EB

suy ra tgADC = tgAEB (ch.cgv)

suy ra AD=AE(hai cạnh tương ứng)

câu b và câu c k xong đi rồi nói

26 tháng 12 2018

a) Xét tam giác ABC và tam giác ACD có:
AB=AC (gt)
^A1=^A2 (AD là tia phân giác của BC
AD chung
Suy ra: tam giác ABD =tam giác ACD(c.g.c)
VÌ tam giác  ABD= tam  giác ACD
Suy ra: BD=CD( hai cạnh tương ứng ) (1)
mà D1+D2( kề bù )
 D1+D2=180 độ chia 2=90 độ
suy ra:AD vuông góc với BC(2)
Từ 1 và 2 suy ra:
AD là trung trực của BC
b) LẦN SAU