K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
5 tháng 2 2020

A B C H E F K x

a, Ax là phân giác của góc BAC (gt)

K thuộc Ax

KE _|_ AB (gt); KF _|_ AC (gt)

=> KE = KF (định lí)                           (1)

K thuộc đường trung trực  của BC (gt)

=> KB = KC (Định lí)  

xét tam giác EKB và tam giác FKC có : góc BEK = góc KFC = 90 

=> tam giác EKB = tam giác FKC (ch-cgv)

=> BE = CF (đn)

a ) Ta có Ax là đường trung trực của tam giác ABC => Ax là đường trung trực của tam giác ABC

Xét tam giác BEK vuông tại E và tam giác CFK vuông tại F ta có :

BK = KC ( cmt )

BKE = CKF ( đối đỉnh )

=> Tam giác BEK = tam giác CFK 

=> BE = CF ( 2 cạnh tương ứng )

mik chỉ làm đc câu a thoi maf hình như đề bị sai á

2 tháng 2 2016

mik moi hoc lop 5

2 tháng 2 2016

có ai hỏi bạn đâu mà bạn trả lời : @winx bloom

a) Xét ΔBED và ΔBEC có 

BD=BC(gt)

\(\widehat{DBE}=\widehat{CBE}\)(BE là tia phân giác của \(\widehat{DBC}\))

BE chung

Do đó: ΔBED=ΔBEC(c-g-c)

Xét ΔBDI và ΔBCI có

BD=BC(gt)

\(\widehat{DBI}=\widehat{CBI}\)(BI là tia phân giác của \(\widehat{DBC}\))

BI chung

Do đó: ΔBDI=ΔBCI(c-g-c)

⇒ID=IC(hai cạnh tương ứng)

b) Sửa đề: Chứng minh AH//BI

Xét ΔBDC có BD=BC(gt)

nên ΔBDC cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBDC cân tại B(cmt)

mà BI là đường phân giác ứng với cạnh đáy DC(gt)

nên BI là đường cao ứng với cạnh DC(Định lí tam giác cân)

⇒BI⊥DC

Ta có: AH⊥DC(gt)

BI⊥DC(cmt)

Do đó: AH//BI(Định lí 1 từ vuông góc tới song song)

19 tháng 1 2017

1. A B C D F 1 2 2 1 1 2. A B H D M C

1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C

\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)

\(\Delta DFC\)\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD

2.Theo chứng minh câu 1,ta được BD < CD

\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)

=> D nằm giữa B,M => AD nằm giữa AB,AM (1)

\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)

\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)

\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)

=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm

3 tháng 8 2018

làm như ngu

Hình bn tự vẽ nha!!^^

a, Xét \(\Delta ADM\)VÀ \(\Delta ADN\)có:'

\(\widehat{MAD}=\widehat{DAN}\)(tia p/g \(\widehat{BAN}\))

\(AD\)chung

\(\widehat{ADN}=\widehat{ADM}\)(Đg thg \(\perp\))(=90 độ)

\(\Rightarrow\Delta'ADM=\Delta ADN\left(g.c.g\right)\)

\(\Rightarrow\widehat{M}=\widehat{N}\)(2 góc t/ứ)

Xét tam giác AMN có: \(\widehat{M}=\widehat{N}\Rightarrow\Delta AMN\)là tam giác cân  tại A

a: Xét ΔIDC và ΔIEC có

góc IDC=góc IEC

IC chung

góc C1=góc C2

=>ΔIDC=ΔIEC

=>DC=EC

=>ΔDCE cân tại C

b: MN//AC

=>góc DNM=góc DEC=góc NDM

=>ΔDMN cân tại M

=>MD=MN

=>MN=AE

Xét tứ giác AEMN có

AE//MN

AE=MN

=>AEMN là hbh

=>AM cắt EN tại trung điểm của mỗi đường

=>K là trung điểm của AM