Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hình tương đối dễ nên bạn tự vẽ nhé :))
a) Có tam giác BDC nội tiếp đường tròn đường kính BD
=> Tam giác BDC vuông tại C
=> DC vuông góc BC
Mà OA vuông góc BC (gt)
=> DC // OA
b) Xét tam giác OBC có OB = OC = R
=> Tam giác OBC cân tại O
=> OI vừa là đường cao vừa là đường phân giác
=> Góc O1 = Góc O2
Xét tam giác ABO và tam giác ACO có:
AO : cạnh chung ( gt )
OB = OC = R ( gt )
Góc O1 = Góc O2 ( cmt )
=> Tam giác ABO = tam giác ACO ( c.g.c )
=> Góc ABO = Góc ACO = 90 độ
=> AC vuông góc OC
=> AC là tiếp tuyến của (O)
c) Câu này mình chịu =)))
Bạn cứ làm câu a,b đi có gì mình nghĩ tiếp :(( Chắc 100%
a: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
=>ΔBCD vuông tại C
=>CD//OA
b: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiêp tuyến của (O)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trực của BC
hay OA⊥BC
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔOKB vuông tại O có OI là đường cao ứng với cạnh huyền BK, ta được:
\(IK\cdot IB=OI^2\)(1)
Xét (O) có
BC là dây khác đường kính
OA là một phần đường kính
BC⊥OA tại I(gt)
Do đó: I là trung điểm của BC(Định lí đường kính vuông góc với dây)
hay IB=IC(2)
Từ (1) và (2) suy ra \(IK\cdot IC=OI^2\)
Xét ΔABC có
AI là đường cao ứng với cạnh BC(AI⊥BC)
AI là đường trung tuyến ứng với cạnh BC(I là trung điểm của BC)
Do đó: ΔABC cân tại A(Định lí tam giác cân)
⇒AB=AC
Xét ΔABO và ΔACO có
AB=AC(cmt)
OB=OC(=R)
OA chung
Do đó: ΔABO=ΔACO(c-c-c)
⇒\(\widehat{ABO}=\widehat{ACO}\)(hai góc tương ứng)
mà \(\widehat{ABO}=90^0\)(AB là tiếp tuyến của (O) có B là tiếp điểm)
nên \(\widehat{ACO}=90^0\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOCA vuông tại C có CI là đường cao ứng với cạnh huyền OA, ta được:
\(OI\cdot IA=CI^2\)
Áp dụng định lí Pytago vào ΔOIC vuông tại I, ta được:
\(OC^2=OI^2+IC^2\)
\(\Leftrightarrow IK\cdot IC+OI\cdot IA=R^2\)(đpcm)