K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

Ta có: \(6xy-8x-3y-2=0\)

\(\Leftrightarrow6xy-3y-8x+4-6=0\)

\(\Leftrightarrow3y\left(2x-1\right)-4\left(2x-1\right)=6\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)=6\)

\(\Leftrightarrow\left(2x-1\right);\left(3y-4\right)\inƯ\left(6\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

mà 2x-1 lẻ và \(2x-1\ge-1\) \(\forall x\in N\)

nên \(\left(2x-1\right)\in\left\{-1;1;-3;3\right\}\) và \(\left(3y-4\right)\in\left\{2;-2;6;-6\right\}\)

Trường hợp 1: 

\(\left\{{}\begin{matrix}2x-1=-1\\3y-4=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}2x-1=1\\3y-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{10}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}2x-1=-3\\3y-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}2x-1=3\\3y-4=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\left(nhận\right)\end{matrix}\right.\)

Vậy: (x,y)=(2;2)

20 tháng 12 2016

Long không biết làm hả 

Ha ha ha cu Long ngu qua

Minh cug ngu nhu cu Lomg

Gio van

2 tháng 2 2016

a) x=1

vì 11*2.1chia hết cho 2.1-1

2 tháng 2 2016

a ) x=2 

b ) x =9 

y = 12

8 tháng 7 2017

Cái này dễ :v, Mincopski thẳng cánh :v

\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)

\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)

\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)

\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)

\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

Done !! :3

9 tháng 7 2017

xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ