cho tam giác ABC , M là trung điểm của BC . Trên tia AM lấy điểm D sao cho M là trung điểm của AD.
a)chứng minh tam giác AMC = tam giác DMB và BD // AC
b)trên tia AB lấy điểm E sao cho B là trung điểm của AE . chứng minh tam giác ABC = tam giác DCB và tam giác ABC = tam giác BED.
c)trên đường thẳng DE lấy điểm F sao cho D là tung điểm của
EF . chứng minh ba điểm A,C,F thẳng hàng và C là trung điểm của AF
a) Xét ΔAMC và ΔDMB có
AM=DM(M là trung điểm của AD)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAMB và ΔDMC có
AM=DM(M là trung điểm của AD)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
⇒AB=CD(Hai cạnh tương ứng)
Ta có: ΔAMC=ΔDMB(cmt)
nên AC=BD(Hai cạnh tương ứng)
Xét ΔABC và ΔDCB có
AB=DC(cmt)
AC=DB(cmt)
BC chung
Do đó: ΔABC=ΔDCB(c-c-c)