K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

16 tháng 12 2021

a: Xét ΔAMC và ΔDMB có 

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

12 tháng 12 2016

a)Chứng minh tam giác AMC = tam giác DMB?

Xét tam giác AMC và tam giác DMB có:

- Góc BMD = góc AMC (đối đỉnh)

-BM = MC (gt)

-MA = MD (gt)

=> Tam giác AMC = tam giác DMB(g.c.g)

b)Chứng minh AC = BD?

Ta có: tam giác AMC = tam giác DMB (cmt)

=>BD=AC

c)Chứng minh AB vuông góc với BD?

Xét tam giác AMC và tam giác DMB có:

-Góc DMB = góc ABC (so le trong)

=>BD//AC

Mà AB vuông góc với AC

=> AB vuông góc với BD

d) Chứng minh AM=1/2 BC?

Xát tam giác ABC vuông tại A có:

M là trung điểm của BC(gt)

=>AM là đường trung tuyến

=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)

12 tháng 12 2016

ai giúp vs

 

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

22 tháng 12 2020

a) Xét ΔAMC và ΔDMB có 

AM=DM(M là trung điểm của AD)

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔAMC=ΔDMB(c-g-c)

\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)

mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong

nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)

b) Xét ΔAMB và ΔDMC có 

AM=DM(M là trung điểm của AD)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

⇒AB=CD(Hai cạnh tương ứng)

Ta có: ΔAMC=ΔDMB(cmt)

nên AC=BD(Hai cạnh tương ứng)

Xét ΔABC và ΔDCB có 

AB=DC(cmt)

AC=DB(cmt)

BC chung

Do đó: ΔABC=ΔDCB(c-c-c)

14 tháng 1 2022

em chịu

13 tháng 4 2021

Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?

a) Sửa đề: ΔAMB=ΔDMC

Xét ΔAMB và ΔDMC có 

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau