Cho mặt trụ (T) và một điểm S cố định nằm ngoài (T). Một đường thẳng Δ luôn đi qua S và cắt (T) tại hai điểm A, B (A, B có thể trùng nhau). Gọi M là trung điểm của đoạn thẳng AB. Tập hợp các điểm M là
A. Một mặt phẳng đi qua S.
B. Một mặt cầu đi qua S.
C. Một mặt nón có đỉnh là S.
D. Một mặt trụ.
Đáp án D
Gọi P là mặt phẳng đi qua S và vuông góc với trục của mặt T . Mặt phẳng P cắt T theo giao tuyến một đường tròn. Chiếu A, B, M theo phương vuông góc với mặt phẳng P ta được các điểm theo thứ tự là A ' , B ' , M ' thẳng hàng với S, trong đó A’,B’ nằm trên đường tròn tâm O trong mặt phẳng P và M’là trung điểm của A’B’. Do đó M’ luôn nằm trên đường tròn đường kính SO trong mặt phẳng P và MM’ vuông góc với P . Vậy MM’ nằm trên mặt trụ T ' chứa đường tròn đường kính SO và có trục song song với trục của mặt trụ T .