Tìm tất cả các giá trị của m để hàm số y = m - 1 x 3 - 3 m - 1 x 2 + 3 x + 2 đồng biến trên R
A. 1 < m ≤ 2
B. 1 < m < 2
C. 1 ≤ m ≤ 2
D. 1 ≤ m < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y'=1/3*3x^2(m-1)-(m-1)2x+1
=x^2(m-1)-x(2m-2)+1
Để hàm số đồng biến trên R thì y'>0 với mọi x
=>m-1<>0 và (2m-2)^2-4(m-1)>0
=>m<>1 và 4m^2-8m+4-4m+4>0
=>4m^2-12m+8>0 và m<>1
=>m^2-3m+2>0 và m<>1
=>m>2 hoặc m<1
Hàm là \(y=mx^2-\left(m^2+1\right)x+3\) đúng không nhỉ?
- Với \(m=0\) hàm nghịch biến trên R (không thỏa)
- Với \(m\ne0\) hàm số đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}m>0\\\dfrac{m^2+1}{2m}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\m^2+1\le2m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\\left(m-1\right)^2\le0\end{matrix}\right.\)
\(\Rightarrow m=1\)