K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

=500 + 40 + 0,5 +0,003

=540 + 0,5 + 0,003

= 540,503

24 tháng 11 2021

cảm ơn nhé

28 tháng 2 2023

Giúp mik với! mik cần gấp trong 5 phút.

e: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x+5}{2}=\dfrac{y-2}{3}=\dfrac{x-y+5+2}{2-3}=\dfrac{10+7}{-1}=-17\)

=>x+5=-34; y-2=-51

=>x=-39; y=-49

g: Áp dụng tính chất của DTSBN, ta được

\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}=\dfrac{5a-3b-4c-5-9+20}{5\cdot2-3\cdot4-6\cdot4}=\dfrac{-253}{13}\)

=>a-1=-506/13; b+3=-1012/13; c-5=-1518/13

=>a=-493/13; b=-1051/13; c=-1453/13

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:
e. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-(y-2)}{2-3}=\frac{(x-y)+5+2}{2-3}=\frac{10+5+2}{-1}=-17$

Suy ra:

$x+5=2(-17)=-34\Rightarrow x=-39$

$y-2=3(-17)=-51\Rightarrow y=-49$

f. Đề thiếu. Bạn xem lại

h. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}$

$=\frac{5a-5}{10}=\frac{3b+9}{12}=\frac{4c-20}{24}$

$=\frac{5a-5-(3b+9)-(4c-20)}{10-12-24}$

$=\frac{5a-3b-4c-5-9+20}{-26}=\frac{500-5-9+20}{-26}=\frac{-253}{13}$

Suy ra:
$a-1=2.\frac{-253}{13}\Rightarrow a=\frac{-493}{13}$

$b+3=4.\frac{-253}{13}\Rightarrow b=\frac{-1051}{13}$

$c-5=6.\frac{-253}{13}\Rightarrow c=\frac{-1453}{13}$

26 tháng 11 2021

A. 0,0815

B. 81,5

C. 0,815

D. 8,015

=0,0815

=81,5

=0,815

=8,015

 

24 tháng 2 2021

`a,3/10=0,3`

`3/100=0,03`

`4 25/100=4 1/4=4,25`

`2002/1000=2,002`

`b,1/4=0,25`

`3/5=0,6`

`7/8=0,875`

`1 1/2=1,5`

24 tháng 2 2021

a) Biểu diễn bằng số thập phân: 0,3; 0,03; 4,25; 2,002

b) Biểu diễn bằng số thập phân: 

\(\dfrac{1}{4}=\dfrac{25}{100}=0,25\\ \dfrac{3}{5}=\dfrac{6}{10}=0,6\\ \dfrac{7}{8}=\dfrac{875}{1000}=0,875\\ 1\dfrac{1}{2}=\dfrac{3}{2}=\dfrac{15}{10}=1,5\)

7 tháng 5 2017

lầy dạ??

2 tháng 5 2017

1)

\(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\\ 5A=1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\\ 5A-A=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\right)\\ 4A=1-\dfrac{500}{5^{500}}\\ A=\left(1-\dfrac{500}{5^{500}}\right):4\\ A=1:4-\dfrac{500}{5^{500}}:4\\ A=\dfrac{1}{4}-\dfrac{500}{5^{500}\cdot4}< \dfrac{1}{4}< \dfrac{5}{16}\)

Vậy \(A< \dfrac{5}{16}\)