Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3
A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)
A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)
A = \(\dfrac{-73}{50}\)
B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))
B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)
B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)
B = \(\dfrac{13}{12}\)
1: Ta có: \(23\dfrac{1}{4}\cdot\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)
\(=\dfrac{93}{4}\cdot\dfrac{7}{5}-\dfrac{53}{4}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot10=14\)
2: Ta có: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\dfrac{1}{400}\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)
\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)
b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)
\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)
\(=-10\cdot\dfrac{1}{5}=-2\)
c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)
\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)
d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)
\(=\dfrac{16}{16}-\dfrac{25}{25}\)
\(=1-1=0\)
e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)
\(=\dfrac{5}{6}+\dfrac{4}{3}\)
\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)
\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)
\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)
\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)
2)
\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)
Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\) là \(C\)
\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)
\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)
Vậy \(D< 100\)
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
a)4/5+x=2/3
x=2/3-4/5
x=-2/15
b)-5/6-x=2/3
x=-5/6-2/3
x=-3/2
c)1/2x+3/4=-3/10
1/2x=-3/10-3/4
1/2x=-21/20
x=-21/20:1/2
x=-21/10
d)x/3-1/2=1/5
x/3=1/5+1/2
x/3=7/10
10x/30=21/30
10x=21
x=21:10
x=21/10
1)
\(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\\ 5A=1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\\ 5A-A=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\right)\\ 4A=1-\dfrac{500}{5^{500}}\\ A=\left(1-\dfrac{500}{5^{500}}\right):4\\ A=1:4-\dfrac{500}{5^{500}}:4\\ A=\dfrac{1}{4}-\dfrac{500}{5^{500}\cdot4}< \dfrac{1}{4}< \dfrac{5}{16}\)
Vậy \(A< \dfrac{5}{16}\)