K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

1)

\(A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\\ 5A=1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\\ 5A-A=\left(1+\dfrac{2}{5}+\dfrac{3}{5^2}+...+\dfrac{500}{5^{49}}\right)-\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{500}{5^{500}}\right)\\ 4A=1-\dfrac{500}{5^{500}}\\ A=\left(1-\dfrac{500}{5^{500}}\right):4\\ A=1:4-\dfrac{500}{5^{500}}:4\\ A=\dfrac{1}{4}-\dfrac{500}{5^{500}\cdot4}< \dfrac{1}{4}< \dfrac{5}{16}\)

Vậy \(A< \dfrac{5}{16}\)

7 tháng 5 2017

lầy dạ??

6 tháng 9 2021

A = (\(\dfrac{5}{6}\) - \(\dfrac{4}{5}\)) . 1\(\dfrac{1}{5}\) + \(\dfrac{3}{16}\) : (\(\dfrac{-1}{2}\))3

A = \(\dfrac{1}{30}\) . \(\dfrac{6}{5}\) + \(\dfrac{3}{16}\) : \(\dfrac{-1}{8}\)

A = \(\dfrac{1}{25}\) + \(\dfrac{3}{16}\) . \(\dfrac{-8}{1}\)

A = \(\dfrac{1}{25}\) + \(\dfrac{-3}{2}\)

A = \(\dfrac{-73}{50}\)

6 tháng 9 2021

B = \(\dfrac{4}{17}\) . (7\(\dfrac{3}{4}\) - 6\(\dfrac{1}{3}\)) + (5\(\dfrac{3}{4}\) - 6.95) : (-1\(\dfrac{3}{5}\))

B = \(\dfrac{4}{17}\) . \(\dfrac{17}{12}\) + (\(\dfrac{23}{4}\) - \(\dfrac{139}{20}\)) : \(\dfrac{-8}{5}\)

B = \(\dfrac{1}{3}\) + \(\dfrac{-6}{5}\) . \(\dfrac{-5}{8}\)

B = \(\dfrac{13}{12}\)

1: Ta có: \(23\dfrac{1}{4}\cdot\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)

\(=\dfrac{93}{4}\cdot\dfrac{7}{5}-\dfrac{53}{4}\cdot\dfrac{7}{5}\)

\(=\dfrac{7}{5}\cdot10=14\)

2: Ta có: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)

\(=\dfrac{12+8-3}{12}\cdot\dfrac{1}{400}\)

\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)

19 tháng 12 2020

a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)

\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)

\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)

\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)

b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)

\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)

\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)

\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)

\(=-10\cdot\dfrac{1}{5}=-2\)

c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)

\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)

\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)

\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)

d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)

\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)

\(=\dfrac{16}{16}-\dfrac{25}{25}\)

\(=1-1=0\)

e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)

\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)

\(=\dfrac{5}{6}+\dfrac{4}{3}\)

\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)

15 tháng 3 2022

\(a,\dfrac{3}{5}+\dfrac{-5}{9}=\dfrac{27-25}{45}=\dfrac{2}{49}.\)

\(c,\dfrac{-27}{23}+\dfrac{5}{21}+\dfrac{4}{23}+\dfrac{16}{21}+\dfrac{1}{2}=\dfrac{-23}{23}+\dfrac{21}{21}+\dfrac{1}{2}=-1+1+\dfrac{1}{2}=\dfrac{1}{2}.\)

\(d,\dfrac{-8}{9}+\dfrac{1}{9}.\dfrac{2}{9}+\dfrac{1}{9}.\dfrac{7}{9}=\dfrac{-8}{9}+\dfrac{1}{9}.\left(\dfrac{2}{9}+\dfrac{7}{9}\right)=\dfrac{-8}{9}+\dfrac{1}{9}.1=\dfrac{-8+1}{9}=\dfrac{-7}{9}.\)

20 tháng 1 2022

a. \(\dfrac{-6}{11}+\dfrac{5}{-11}< --1\)

b. \(\dfrac{-5}{16}+\dfrac{-3}{16}>-\dfrac{1}{3}\)

c. \(\dfrac{2}{5}>\dfrac{3}{4}+-\dfrac{1}{6}\)

d. \(\dfrac{5}{6}+\dfrac{-2}{3}>\dfrac{1}{12}+\dfrac{-4}{5}\)

2 tháng 5 2017

2)

\(D=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3+1}{3}+\dfrac{3^2+1}{3^2}+\dfrac{3^3+1}{3^3}+...+\dfrac{3^{98}+1}{3^{98}}\\ D=\dfrac{3}{3}+\dfrac{1}{3}+\dfrac{3^2}{3^2}+\dfrac{1}{3^2}+\dfrac{3^3}{3^3}+\dfrac{1}{3^3}+...+\dfrac{3^{98}}{3^{98}}+\dfrac{1}{3^{98}}\\ D=1+\dfrac{1}{3}+1+\dfrac{1}{3^2}+1+\dfrac{1}{3^3}+...+1+\dfrac{1}{3^{98}}\\ D=\left(1+1+1+...+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ D=98+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\)

Gọi \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\)\(C\)

\(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\\ 3C=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\\ 3C-C=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}\right)\\ 2C=1-\dfrac{1}{3^{98}}\\ C=\left(1-\dfrac{1}{3^{98}}\right):2\\ C=1:2-\dfrac{1}{3^{98}}:2\\ C=\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}\)

\(D=98+C=98+\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}=98\dfrac{1}{2}-\dfrac{1}{3^{98}\cdot2}< 100\)

Vậy \(D< 100\)

a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)

b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)

c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)

d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)

e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)

f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)

12 tháng 3 2022

a)4/5+x=2/3

x=2/3-4/5

x=-2/15

b)-5/6-x=2/3

x=-5/6-2/3

x=-3/2

c)1/2x+3/4=-3/10

1/2x=-3/10-3/4

1/2x=-21/20

x=-21/20:1/2

x=-21/10

d)x/3-1/2=1/5

x/3=1/5+1/2

x/3=7/10

10x/30=21/30

10x=21

x=21:10

x=21/10