Cho x, y là hai số thực dương thỏa mãn log 3 2 x + y + 1 x + y = x + 2 y .Tìm giá trị nhỏ nhất của biểu thức P = 1 x + 2 y ,
A. 3 + 3
B. 3 + 2 3
C. 6
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hai số thực x, y thỏa x^2+xy+y^2=1. TÌm giá trị lớn nhất của biểu thức: P=x^3*y+y^3*x
Chọn D
Ta có: x(3 + 5i) - y(1 + 2i) = 9 + 16i <=> (3x - y) + (5x - 2y) = 9 + 16i
Vậy: T = |x - y| = 5
Áp dụng bđt AM-GM ta có
\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)
\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)
Dấu "=" xảy ra khi x=y
cho x,y là các số thực ko âm tm: x+y+z=2.Tìm giá trị nhỏ nhất của biểu thứcx^4+Y^4+Z^4 .
B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.
Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)
Áp dụng :
\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
KL:...
Đáp án C
log 3 2 x + y + 1 x + y = x + 2 y ⇔ log 3 2 x + y + 1 − log 3 x + y = 3 x + y − 2 x + y + 1 + 1 ⇔ log 3 2 x + y + 1 + 2 x + y + 1 = log 3 3 x + y + 3 x + y *
Xét hàm số f t = log 3 t + t trên khoảng 0 ; + ∞ ⇒ f t là hàm số đồng biến trên 0 ; + ∞
Mà * ⇔ f 2 x + y + 1 = f 3 x + 3 y ⇔ 2 x + y + 1 = 3 x + 3 y ⇔ x + 2 y = 1
Đặt a = y > 0 ⇔ y = a 2 ⇔ x = 1 − 2 y = 1 − 2 a 2 , khi đó T = g a = 1 1 − 2 a 2 + 2 a
Xét hàm số g a = 1 1 − 2 a 2 + 2 a trên khoảng 0 ; 1 2 , suy ra min 0 ; 1 2 g a = 6
Vậy giá trị nhỏ nhất cần tìm là T min = 6