K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Đáp án C

log 3 2 x + y + 1 x + y = x + 2 y ⇔ log 3 2 x + y + 1 − log 3 x + y = 3 x + y − 2 x + y + 1 + 1 ⇔ log 3 2 x + y + 1 + 2 x + y + 1 = log 3 3 x + y + 3 x + y *

Xét hàm số f t = log 3 t + t  trên khoảng 0 ; + ∞ ⇒ f t  là hàm số đồng biến trên 0 ; + ∞  

Mà * ⇔ f 2 x + y + 1 = f 3 x + 3 y ⇔ 2 x + y + 1 = 3 x + 3 y ⇔ x + 2 y = 1  

Đặt a = y > 0 ⇔ y = a 2 ⇔ x = 1 − 2 y = 1 − 2 a 2 ,  khi đó T = g a = 1 1 − 2 a 2 + 2 a  

Xét hàm số g a = 1 1 − 2 a 2 + 2 a trên khoảng 0 ; 1 2 ,  suy ra min 0 ; 1 2 g a = 6  

Vậy  giá trị nhỏ nhất cần tìm là T min = 6  

3 tháng 9 2018

25 tháng 2 2016

Ta có : x3+y3+z3=3xyz

<=>x3+y3+3x2y+3xy2+z3-3xyz-3x2y-3xy2=0

<=>(x+y)3+z3-3xy.(x+y+z)=0

<=>(x+y+z)[(x+y)2-(x+y).z+z2]-3xy.(x+y+z)=0

<=>(x+y+z).(x2+2xy+y2-xz-yz+z2-3xy)=0

<=>(x+y+z)(x2+y2+z2-xy-yz-xz)=0

<=>x+y+z=0(loại) hoặc x2+y2+z2-xy-yz-xz=0

*x2+y2+z2-xy-yz-xz=0

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z

Suy ra: \(P=\frac{xyz}{\left(x+x\right)\left(y+y\right)\left(z+z\right)}=\frac{xyz}{2x.2y.2z}=\frac{1}{8}\)

23 tháng 12 2016

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

9 tháng 6 2019

Đáp án đúng : B

20 tháng 12 2018

19 tháng 5 2019

10 tháng 1 2018

30 tháng 3 2019

\(2P=2x^2-2y^2-2xy-2x+2y+2\)

\(2P=\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\)

Áp dụng BĐT Bunhiacopxki:

\(\left(1^2+1^2+1^2\right)\left[\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\right]\ge\left(x-y+1-x+y+1\right)^2\)

\(3.2M\ge4\)

\(\Leftrightarrow M\ge\dfrac{2}{3}\)

Mmin\(=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{x-y}=\dfrac{1}{1-x}=\dfrac{1}{y+1}\)

\(\Leftrightarrow x=\dfrac{1}{3};y=\dfrac{-1}{3}\)

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .