Tìm tất cả các giá trị thực của tham số m sao cho điểm cực tiểu của đồ thị hàm số y = x 3 + x 2 + m x - 1 nằm bên phải trục tung?
A. m < 0
B. 0 < m < 1 3
C. m < 1 3
D. Không tồn tại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Đồ thị hàm số có điểm cực tiểu khi và chỉ khi phương trình y’ = 0 có hai nghiệm phân biệt
Khi đó, giả sử x1, x2 là hai nghiệm của phương trình y’=0.
Bảng biến thiên
Do nên hoặc nên điểm cực tiểu của đồ thị hàm số nằm bên phải trục tung
(1),(2) => m < 0
Đáp án C
TXĐ: D = ℝ .
Ta có y ' = x 2 − 2 m − 1 x + m − 1 .
Để đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục tung thì
m − 1 2 − m − 1 > 0 m − 1 > 0 2 m − 1 > 0 ⇔ m > 2.
Vậy m>2 thỏa mãn điều kiện đề bài.
Đáp án D
Xét hàm số y = x 3 + x 2 + m x - 1 có y ' = 3 x 2 + 2 x + m , ∀ x ∈ ℝ
Để hàm số có 2 điểm cực trị ⇔ y ' = 0 có 2 nghiệm phân biệt ⇔ 1 - 3 m > 0 ⇔ m < 1 3
Gọi x 1 , x 2 lần lượt là các điểm cực tiểu và cực đại của hàm số đã cho
Theo Viet, ta có x 1 + x 2 = - 2 3 x 1 x 2 = m 3 mà x 1 > 0 suy ra x 1 x 2 = m 3 < 0 ⇔ m < 0
Kết hợp m ∈ - 5 ; 6 mà m ∈ ℤ → m = - 4 ; - 3 ; - 2 ; - 1
Đáp án A
Ta có y ' = x 2 − 2 x + m − 1
Đồ thị hàm số có 2 điểm cực trị đều nằm bên trái trục tung khi y ' = 0 có 2 nghiệm phân biệt đều dương
⇔ Δ ' = 1 − m + 1 > 0 S = 2 > 0 P = m − 1 > 0 ⇔ 2 > m > 1
Ta có đạo hàm y’ = 3x2+ 2x+ m.
Hàm số có cực trị khi ∆ ' = 1 - 3 m > 0 ⇔ m < 1 3
Do hàm số có a=1>0 ⇒ x C T > x C D
Yêu cầu bài toán trở thành phương trình y’ = 0 có ít nhất 1 nghiệm dương
Do x 1 + x 2 = - 2 3 < 0 x 1 x 2 = m 3 ⇒ m < 0 là giá trị cần tìm.
Vậy - 5 ; 6 ∩ S = ( - 5 ; 0 )
Mà m nguyên nên chọn -4; -3; -2; -1. Có 4 giá trị thỏa mãn.
Chọn D.
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1
Đáp án là A