cho hình bình hành ABCD (AB>AD) gọi E và K lần lượt là trung điểm của CD và AB,BD cắt AC tại O
chứng minh rằng:a/AECK là hình bình hành
b/ ba điểm E,O,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AECK có
AK//EC
AK=EC
Do đó: AECK là hình bình hành
a) Ta có: \(AB=DC,AB//CD\)(ABCD là hình bình hành)
Mà \(K,E\in AB,CD;AK=\dfrac{1}{2}AB;CE=\dfrac{1}{2}CD\)
\(\Rightarrow AK=CE\) và \(AK//CE\)
=> AECK là hình bình hành
b) Ta có: O là giao điểm 2 đường chéo AC và BD
=> O là trung điểm AC
=> O là trung điểm KE(AECK là hình bình hành)
=> E,O,K thẳng hàng
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a: Xét tứ giác AECK có
AK//CE
AK=CE
Do đó: AECK là hình bình hành
a. Vì ABCD là hbh nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AK=BK=EC=ED\)
Mà AB//CD nên AK//CE
Vậy AECK là hbh
b. Vì ABCD là hbh mà O là giao của AC và BD nên O là trung điểm AC và BD
Mà AECK là hbh nên O cũng là trung điểm EK
Vậy E,O,K thẳng hàng