K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Đáp án là D

14 tháng 2 2017

13 tháng 2 2017

10 tháng 10 2017

Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là 4 4 = 256 cách. Suy ra  n Ω = 256

Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.

Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có C 5 3 . 4 = 16 cách

Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách

Suy ra n(A) = 16 . 3 = 48

Vậy xác suất của biến cố cần tìm là P A = 48 256 = 3 16

Đáp án B

16 tháng 10 2019

Đáp án B

Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là cách. Suy ra

Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.

Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có cách

Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách

Suy ra

 

Vậy xác suất của biến cố cần tìm là

9 tháng 5 2019

Chọn A

Số phần tử không gian mẫu:

Gọi A là biến cố: Mỗi toa có ít nhất một khách lên tàu .

Có hai trường hợp:

TH1: Một toa có 3 khách 2 toa còn lại mỗi toa có 1 khách.

Trường hợp này có: (cách).

TH 2: Một toa có 1 khách 2 toa còn lại mỗi toa có 2 khách.

Trường hợp này có:(cách).

Số kết quả thuận lợi của biến cố A là: n(A) = 150(cách).

 Xác suất của biến cố A : 

6 tháng 2 2019

22 tháng 7 2018

Đáp án C.

Gọi là tập tất cả các dãy số trong đó là số toa mà hành khách thứ i lên  

+ là tập các cách lên tàu sao cho có 2 toa có 3 người và mỗi toa còn lại 1 người

 

+ là tập các cách lên tàu sao cho có 2 toa có 2 người và 1 toa có 1 người

 

là biến cố “Mỗi toa đều có hành khách lên tàu”

 

24 tháng 6 2019

Đáp án D

2 tháng 7 2021

D bạn nhé

7 tháng 3 2017

Chọn D