Cho hình chóp tứ giác đều S.ABCD có khoảng cách từ tâm O của đáy đến mặt bên là a và góc giữa đường cao và mặt bên là 30 ° . Khi đó thể tích V của khối chóp S.ABCD là
A. V = 32 a 3 3
B. V = 32 a 3 9
C. V = 32 a 3 3 3
D. V = 32 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp
Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng để xác định khoảng cách
Ta tính SO dựa vào công thức thể tích hình chóp, tính OH dựa vào hệ thức lượng trong tam giác vuông.
Cách giải:
Xét tam giác SOM vuông tại M có OH là đường cao nên theo hệ thức lượng trong tam giác vuông ta có
Đáp án C
Hướng dẫn giải:
Gọi H là tâm của đáy khi đó S H ⊥ ( A B C D ) .
Dựng H E ⊥ C D , H K ⊥ S E .
Khi đó C D ⊥ ( S H E )
Mặt khác A D = 2 H E = 2 a 2
Đáp án B