Mỗi khẳng định sau đúng hay sai? Vì sao?
√39 < 7 và √39 > 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng, v ì √ 0 , 0001 = √ 0 , 01 2 = 0 , 01
b) Sai, vì vế phải không có nghĩa.
(Lưu ý: √A có nghĩa khi A ≥ 0)
c) Đúng, v ì 7 = √ 7 2 = √ 49 > √ 39
6 = √ 6 2 = √ 36 < √ 39
d) Đúng, v ì 4 - √ 13 = √ 4 2 - √ 13 = √ 16 - √ 13 > 0
Do đó: (4 - √13).2x < √3(4 - √13) (giản ước hai vế với (4 - √13))
⇔ 2x < √3
a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01
Vì VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT.
b) Sai.
Vì vế phải không có nghĩa do số âm không có căn bậc hai.
c) Đúng.
Vì: 36<39<4936<39<49 ⇔√36<√39<√49⇔36<39<49
⇔√62<√39<√72⇔62<39<72
⇔6<√39<7⇔6<39<7
Hay √39>639>6 và √39<739<7.
d) Đúng.
Xét bất phương trình đề cho:
(4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13) (1)(1)
Ta có:
16>13⇔√16>√1316>13⇔16>13
⇔√42>√13⇔42>13
⇔4>√13⇔4>13
⇔4−√13>0⇔4−13>0
Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:
(4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)
⇔2x<√3.⇔2x<3.
Vậy phép biến đổi tương đương trong câu d là đúng.
Sai, vì vế phải không có nghĩa.
(Lưu ý: √A có nghĩa khi A ≥ 0)
Ta có: ⇒ VT = 11 + ( - 6 ) > VP = 10 + ( - 6 )
Khẳng định trên là sai.
Ta có: ⇒ VT = 11 + ( - 6 ) > VP = 10 + ( - 6 )
Khẳng định trên là sai.
Ta có: -6 < -5
⇒ (-6).5 < (-5).5 (Nhân cả hai vế với 5 > 0 được BĐT cùng chiều).
⇒ Khẳng định đúng.
Ta có: VP = 5 - 10 = - 5
Mà - 5 > - 6 ⇒ VP > VT.
Vậy khẳng định trên là sai.
Đúng, vì 7 = √72 = √49 > √39
6 = √62 = √36 < √39