K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01

Vì  VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT. 

b) Sai

Vì vế phải không có nghĩa do số âm không có căn bậc hai.

c) Đúng.

Vì: 36<39<4936<39<49  ⇔√36<√39<√49⇔36<39<49

                                 ⇔√62<√39<√72⇔62<39<72

                                 ⇔6<√39<7⇔6<39<7

Hay √39>639>6 và √39<739<7.

d) Đúng. 

Xét bất phương trình đề cho:

                  (4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13)     (1)(1)

Ta có: 

16>13⇔√16>√1316>13⇔16>13

                       ⇔√42>√13⇔42>13

                       ⇔4>√13⇔4>13

                       ⇔4−√13>0⇔4−13>0

Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:

                         (4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)

                        ⇔2x<√3.⇔2x<3.

 Vậy phép biến đổi tương đương trong câu d là đúng. 


 

13 tháng 5 2021

a ) Đúng 

b) Sai vì vế phải không có nghĩa 

c) Đúng 

d) Đúng

19 tháng 4 2017

a) Đúng,  v ì   √ 0 , 0001   =   √ 0 , 01 2   =   0 , 01

b) Sai, vì vế phải không có nghĩa.

(Lưu ý: √A có nghĩa khi A ≥ 0)

c) Đúng,  v ì   7   =   √ 7 2   =   √ 49   >   √ 39

6   =   √ 6 2   =   √ 36   <   √ 39

d) Đúng,  v ì   4   -   √ 13   =   √ 4 2   -   √ 13   =   √ 16   -   √ 13   >   0

Do đó: (4 - √13).2x < √3(4 - √13) (giản ước hai vế với (4 - √13))

⇔ 2x < √3

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

NV
4 tháng 8 2020

a/ \(=\sqrt{\left(\sqrt{3}-1\right)^2\left(2\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(2\sqrt{3}+1\right)=5-\sqrt{3}\)

b/ \(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)=\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)^2\)

\(=\left(\sqrt{3}-2\right)\left(4+2\sqrt{3}\right)=2\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\)

\(=2\left(3-4\right)=-2\)

c/ \(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(=2\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=2.\left(9-5\right)=8\)

d/ \(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)

3 tháng 9 2019

a) \(\sqrt{25}+\sqrt{9}-\sqrt{16}\) = \(\sqrt{5^2}+\sqrt{3^2}-\sqrt{4^2}\) = 5 + 3 - 4 = 4

b) \(\sqrt{0,16}+\sqrt{0,01}+\sqrt{0,25}\) = 0,4 + 0,1 + 0,5 = 1

c) \(\left(\sqrt{3^2}\right)-\left(\sqrt{2^2}\right)+\left(\sqrt{5^2}\right)\)

= 3 - 2 + 5 = 6

d) \(\sqrt{4}-\left(-\sqrt{3}\right)^2+\sqrt{49}\) = 2 - 3 + 7 = 6

e) \(\left(2\sqrt{2}\right)^2-\left(3\sqrt{3}\right)^2\)

= \(\left(\sqrt{8}\right)^2-\left(\sqrt{27}\right)^2\) = 8 - 27 = -19

f) \(\left(-2\sqrt{2}\right)^2+\left(3\sqrt{3}\right)^2\) = 8 + 27 = 35

3 tháng 9 2019

cảm ơn nhé leuleu

21 tháng 6 2018

\(a.\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{4+2.2\sqrt{3}+3}=\left(2-\sqrt{3}\right)\sqrt{\left(2+\sqrt{3}\right)^3}\) = \(\left(2-\sqrt{3}\right)\) | \(2+\sqrt{3}\) | = \(4-3=1\)

\(b.\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\sqrt{8+2.2\sqrt{2}.\sqrt{5}+5}+\sqrt{8-2.2\sqrt{2}.\sqrt{5}+5}=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\) \(=\) | \(2\sqrt{2}+\sqrt{5}\) | \(+\) | \(2\sqrt{2}-\sqrt{5}\) | \(=4\sqrt{2}+2\sqrt{5}\)

\(c.\sqrt{7-3\sqrt{5}}=\dfrac{\sqrt{14-2.3\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{9-2.3\sqrt{5}+5}}{\sqrt{2}}=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{2}}\)\(=\) \(\dfrac{\text{ |}3-\sqrt{5}\text{ |}}{\sqrt{2}}\) \(=\dfrac{3-\sqrt{5}}{\sqrt{2}}\)

\(d.\) Tương Tự nhé bạn.