Cho hình lăng trụ đứng ABCA'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ
A. V = a 3
B. V = a 3 2
C. V = 2 a 3 3
D. V = 2 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Vì tam giác ABC vuông cân tại A, cạnh BC = a√6 nên AB = AC = a√3.
Chọn hệ trục tọa độ Oxyz sao cho A (0;0;0), B (0; a√3; 0), C (a√3;0;0), A' (0;0;z) (z > 0).
VTPT của (BCC'B') là:
VTPT của mặt phẳng (BA'C) là:
Vì góc giữa mặt phẳng và mặt phẳng bằng nên:
Vậy thể tích của khối lăng trụ ABC.A'B'C' là:
Đáp án là B
Ta có d ( A B ' ; C C ' ) = d ( C ; ( A B B ' A ' ) ) = C A = a
B C = a 2 ⇒ V = a 2 . 1 2 a 2 = a 2 2 2