Cho 1 phân số tối giản , biết rằng nếu cộng thêm mẫu số vào tử số và giữ nguyên mẫu số thì giá trị của phân số sẽ tăng lên 8 lần . Phân số đó có mẫu số là .............
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi cộng thêm mẫu số vào tử số và giữ nguyên mẫu số thì giá trị của phân số đó tăng thêm \(1\)đơn vị.
Phân số tối giản cần tìm là:
\(1\div\left(7-1\right)=\frac{1}{6}\).
Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo bài ra ta có: \(\frac{a+b}{b}=9\times\frac{a}{b}=\frac{9a}{b}\)
\(\Rightarrow\frac{a+b}{b}-\frac{9a}{b}=0\Rightarrow\frac{a+b-9a}{b}=0\)
\(\Rightarrow\frac{-8a+b}{b}=0\Rightarrow\frac{-8a}{b}+1=0\)
\(\Rightarrow\frac{-8a}{b}=-1\Rightarrow8a=b\Rightarrow\frac{a}{b}=\frac{1}{8}\)
Vậy phân số tối giản cần tìm là \(\frac{1}{8}\)
Ta gọi :Mẫu số là M và tử số là T
Ta có : T+M \T=4
(T+M):T=4
T+M=4*T
M=4*T-T
M=T*3
1=M/T*3
3/1=M/T
Vậy:M/T=3/1
Lời giải:
Gọi phân số cần tìm là $\frac{a}{b}$. Theo bài ra ta có:
$\frac{a+b}{b}=8\times \frac{a}{b}$
$\frac{a}{b}+1=8\times \frac{a}{b}$
$1=8\times \frac{a}{b}-\frac{a}{b}=7\times \frac{a}{b}$
$\frac{a}{b}=\frac{1}{7}$
$\Rightarrow b=7; a=1$