K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

20 tháng 2 2019

Chọn B

31 tháng 12 2017

Chọn C.

Phương pháp:

Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.

Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều.

Cách giải:

3 tháng 1 2018

Chọn C

15 tháng 6 2017

Đáp án D.

Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên SO ⊥ (ABCD)

Từ giả thiết, ta có 

Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao 

và bán kính đáy là  

và bán kính đáy là 

Suy ra

Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có SI.SO = SM.SB

Suy ra 

Do đó  V 1 V 2   =   108 25

Phân tích phương án nhiễu.

Phương án A: Sai do HS nhớ nhầm công thức tính thể tích khối cầu là

Do đó tính được  V 1 V 2   =   324 25

Phương án B: Sai do HS nhớ nhầm công thức tính thể tích khối nón là

Do đó tính được  V 1 V 2   =   18 30 25

Phương án C: Sai do HS nhớ sai công thức tính thể tích khối nón là

Do đó tính được  V 1 V 2   =   36 25

2 tháng 2 2018

18 tháng 3 2018

Đáp án D

Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên   S O ⊥ ( A B C D )

Từ giả thiết, ta có S O = S A 2 - O A 2 = a 10 2  .

Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao h = S O = a 10 2 và bán kính đáy là  r = O A = a 2 2  .

Suy ra  V 2 = 1 3 πr 2 h = πa 3 10 12

Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có SI.IO = SM.SB  ⇒ SI =  S B 2 2 S O = 3 a 10 10

 

Suy ra V 1 = 4 3 π . ( SI ) 3 = 9 πa 3 10 25 . Do đó V 1 V 2 = 108 25  

 

1 tháng 1 2018

Đáp án: D

 Hướng dẫn giải:

Gọi O là giao điểm của AC và BD, M là trung điểm của SA.

Qua M kẻ đường thẳng vuông góc với SA cắt SO tại I

⇒ I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD

⇒ S I = R = 2

Ta có:

 

⇒ S O = S M . S A S I = S A 2 2 2

⇒ S A = S O 2

⇒ A B = 2 ⇒ S A B C D = A B 2 = 4

⇒ V S . A B C D = 1 3 . S O . S A B C D = 4 2 3

3 tháng 4 2017

Gọi I = AC ∩ BD. Ta thấy AC = a√2 = BD,

SA = SC = a, nên SA2 + SC2 = AC2. Vậy điểm S nhìn AC dưới một góc vuông. Các điểm B và D cũng nhìn AC dưới một góc vuông.

Vậy mặt cầu ngoại tiếp hình chóp là mặt cầu đường kính AC. Tâm của cầu là điểm I và bán kính R = . Ta thấy rằng điểm I cũng là chân đường cao hạ từ đỉnh S xuống đáy.


28 tháng 5 2018

Chon B.

Phương pháp:

Xác định trục của khối chóp sau đó dựng đường thẳng trung trực của một cạnh bên của khối chóp để tìm được tâm của mặt cầu. Từ đó tính bán kính mặt cầu.

Cách giải:

=>SO là trục của đường tròn ngoại tiếp tứ giác ABCD.

Trong mặt phẳng (SOA), vẽ đường trung trực của cạnh SA, cắt SO tại I.

=>I là tâm mặt cầu ngoại tiếp hình chóp.

Ta có: