Tìm tất cả các giá trị thực của tham số a(a>0) thỏa mãn 2 a + 1 2 a 2017 ≤ 2 2017 + 1 2 2017 a
A. 0 < a < 1
B. 1 < a < 2017
C. a ≥ 2017
D. 0 < a ≤ 2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{3} \Leftrightarrow \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}(vì a+b+c=3)\)
\(\Leftrightarrow \dfrac{1}{a}+ \dfrac{1}{b}= \dfrac{1}{a+b+c}- \dfrac{1}{c }\)
\(\Leftrightarrow \dfrac{b+a}{ab}=\dfrac{c-a-b-c}{ac+bc+c^{2}}\)
\(\Leftrightarrow \dfrac{a+b}{ab}=\dfrac{a+b}{-ac-bc-c^2}\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab=-ac-bc-c^2 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ ab+ac+bc+c^2=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ (a+c)(b+c)=0 \end{array} \right.\)
\(\Leftrightarrow \left[\begin{array}{} a+b=0\\ a+c=0\\ b+c=0 \end{array} \right.\)
Vì vai trò của a,b,c là như nhau nên ta giả sử a+b=0
mà a+b+c=0
\(\Rightarrow c=3\)
Thay c=3 vào biểu thức P ta có:
\(P=(a-3)^{2017}.(b-3)^{2017}.(3-3)^{2017} =0 \)
Vậy P=0
1.a) A là số tự nhiên khi và chỉ khi 4x\(⋮\)x-2 =>x-2 là ước của 4 và x-2 \(\ge\)1=>x={3;4;6}
b) |A| > A khi và chỉ khi A âm=> x<2
2.b2c+2014 hay b2c+2017 bạn
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu b tại đây nhé.
THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>
cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)
=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu
chắc qua bùn ngủ qué ko giải đenta nha^,^
m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)
Đáp án C
Ta có 2 a + 1 2 a 2017 ≤ 2 2017 + 1 2 2017 a ⇔ 1 + 4 a 2017 ≤ 1 + 4 2017 a ⇔ ln 1 + 4 a a ≤ ln 1 + 4 2017 2017
Xét hàm số f t = ln 1 + 4 t t với t ∈ 0 ; + ∞ ⇒ Hàm số nghịch biến trên khoảng 0 ; + ∞
Mà ln 1 + 4 a a ≤ ln 1 + 4 2017 2017 ⇔ f a ≤ f 2017 suy ra a ≥ 2017