K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

?? Bạn phải cho số liệu j chứ

20 tháng 11 2021

Mình ra như này 3,4603008GB

nhưng do không có nên chọn A nha

5 tháng 1 2022

C 22,9 GB free of 58,0 GB 

5 tháng 1 2022

C

3 tháng 2 2020

a/ △GBC có \(\widehat{B}=\widehat{C}\)

=> △GBC cân tại G

=> BG = CG (1)

Có: \(\widehat{GBD}=\frac{1}{2}\widehat{GBC}\) (GT)

\(\widehat{GCE}=\frac{1}{2}\widehat{GCB}\) (GT)

Lại có: \(\widehat{GCB}=\widehat{GBC}\left(GT\right)\)

=> \(\widehat{GBD}=\widehat{GCE}\) (2)

Xét ΔGBD và ΔGCE ta có:

\(\widehat{GBD}=\widehat{GCE}\) (đã chứng minh ở 2)

BG = CG (đã chứng minh ở 1)

\(\widehat{BGC:}chung\)

=> ΔGBD = ΔGCE (g - c - g)

=> BD = CE (2 cạnh tương ứng)

b/ Có:

Có: \(\widehat{CBD}=\frac{1}{2}\widehat{GBC}\) (GT)

\(\widehat{BCE}=\frac{1}{2}\widehat{GCB}\) (GT)

Lại có: \(\widehat{GCB}=\widehat{GBC}\left(GT\right)\)

=> \(\widehat{CBD}=\widehat{BCE}\)

Hay: \(\widehat{CBO}=\widehat{BCO}\)

=> ΔOBC cân tại O

=> OB = OC

Xét ΔEOB và ΔDOC ta có:

\(\widehat{GBD}=\widehat{GCE}\) (đã chứng minh ở 2)

OB = OC (cmt)

\(\widehat{EOB}=\widehat{DOC}\) (đối đỉnh)

=> ΔEOB = ΔDOC (g - c - g)

3 tháng 2 2020

Tham khảo hình:

a) Vì \(BD\) là tia phân giác của \(\widehat{GBC}\left(gt\right)\)

=> \(\widehat{GBD}=\widehat{DBC}=\frac{1}{2}\widehat{GBC}\) (1).

+ Vì \(CE\) là tia phân giác của \(\widehat{GCB}\left(gt\right)\)

=> \(\widehat{GCE}=\widehat{ECB}=\frac{1}{2}\widehat{GCB}\) (2).

\(\widehat{GBC}=\widehat{GCB}\left(gt\right)\) (3).

Từ (1), (2) và (3) => \(\widehat{GBD}=\widehat{GCE}.\)

Từ (3) => \(\Delta GBC\) cân tại \(G.\)

=> \(GB=GC\) (tính chất tam giác cân).

Xét 2 \(\Delta\) \(GBD\)\(GCE\) có:

\(\widehat{GBD}=\widehat{GCE}\left(cmt\right)\)

\(GB=GC\left(cmt\right)\)

\(\widehat{G}\) chung

=> \(\Delta GBD=\Delta GCE\left(g-c-g\right)\)

=> \(BD=CE\) (2 cạnh tương ứng).

b) Vì \(\widehat{GBD}=\widehat{GCE}\left(cmt\right)\)

=> \(\widehat{EBO}=\widehat{DCO}.\)

Từ (1), (2) và (3) => \(\widehat{DBC}=\widehat{ECB}.\)

Hay \(\widehat{OBC}=\widehat{OCB}.\)

=> \(\Delta OBC\) cân tại O.

=> \(OB=OC\) (tính chất tam giác cân).

Xét 2 \(\Delta\) \(OEB\)\(ODC\) có:

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

\(OB=OC\left(cmt\right)\)

\(\widehat{EOB}=\widehat{DOC}\) (vì 2 góc đối đỉnh)

=> \(\Delta OEB=\Delta ODC\left(g-c-g\right).\)

c) Xét 2 \(\Delta\) \(GBO\)\(GCO\) có:

\(GB=GC\left(cmt\right)\)

\(BO=CO\left(cmt\right)\)

Cạnh GO chung

=> \(\Delta GBO=\Delta GCO\left(c-c-c\right)\)

=> \(\widehat{BGO}=\widehat{CGO}\) (2 góc tương ứng).

=> \(GO\) là tia phân giác của \(\widehat{BGC}.\)

Hay \(GH\) là tia phân giác của \(\widehat{BGC}.\)

+ Vì \(\Delta GBC\) cân tại \(G\left(cmt\right)\)

\(GH\) là đường phân giác của \(\widehat{BGC}\left(cmt\right).\)

=> \(GH\) đồng thời là đường cao của \(\Delta GBC.\)

=> \(GH\perp BC.\)

Chúc bạn học tốt!

15 tháng 11 2021

C

22 tháng 1 2020

bài tập mừng xuân à

22 tháng 1 2020

Bùn T.T

G B C D E O H K a)Ta có:

\(\widehat{B}=\widehat{C}\Rightarrow\frac{1}{2}\widehat{B}=\frac{1}{2}\widehat{C}\Rightarrow\widehat{GBD}=\widehat{DBC}=\widehat{GCE}=\widehat{ECB}\)

Xét △BGD và △CGE có:

\(\widehat{GBD}=\widehat{GCE}\left(cmt\right)\)

BG=CG (△BGC cân tại G)

Góc G chung

⇒△BGD =△CGE (gcg)⇒BD=CE, BG=CG (2 cạnh tương ứng)

b)

c)Ta có:

\(\widehat{OBC}=\widehat{OCB}\)

⇒△OBC cân tại O⇒OB=OC

Xét △OEB và △ODC có:

\(\widehat{EBO}=\widehat{DCO}\) (câu a)

OB=OC (cmt)

\(\widehat{BOE}=\widehat{CO}D\) (đối đỉnh)

⇒△OEB =△ODC (gcg)

c) Xét △GOB và △GOC có:

GO chung

OB=OC (câu b)

GB=GC(△GBC cân tại G)

⇒△GOB =△GOC (ccc)

\(\widehat{BGO}=\widehat{CGO}\) (2 góc tương ứng)

⇒GO là tia phân giác góc BGC

hay △ GBC cân tại G có GH là tia phân giác cũng là đường cao

⇒GH⊥BC (đpcm)

d)Xét △OKB vuông tại K và △ OHB vuông tại H có:

OB chung

\(\widehat{KBO}=\widehat{HBO}\left(gt\right)\)

⇒△OKB =△ OHB (cạnh huyền- góc nhọn)

⇒OK=OH (2 cạnh tương ứng)