K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

22 tháng 5 2019

Có 

Vậy 

Suy ra 

Chọn đáp án C.

9 tháng 1 2018

Đáp án B

19 tháng 3 2019

Đáp án B

Phương pháp:

Chứng minh khoảng cách từ O đến (ABC) không đổi.

Cách giải:

ta có

Ta sẽ chứng minh OK không đổi, khi đó mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính OK

Xét tam giác vuông OCK có

Vậy mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính 2

24 tháng 5 2018

Vậy mặt phẳng (ABC) luôn tiếp xúc mặt cầu tâm O, bán kính R = 2.

30 tháng 7 2018

12 tháng 7 2018

Đáp án A

Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0. Phương trình của mặt phẳng (P) là:

 

 

Suy ra: a = b = c = 6. Vậy có một mặt phẳng (P) thỏa mãn bài toán.

26 tháng 8 2018

Đáp án B.

Mặt cầu S : x 2 + y 2 + z 2 = 3

có tâm O 0 ; 0 ; 0  và bán kính  R = 3

Giả sử A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c  với a , b , c > 0   ⇒ Phương trình mặt phẳng α  là: x a + y b + z c − 1 = 0

Để ý rằng O A 2 + O B 2 + O C 2 = 27 ⇔ a 2 + b 2 + c 2 = 27  và vì α  tiếp xúc mặt cầu S :

⇒ d O , α = R = 3 ⇔ 0 a + 0 b + 0 c − 1 1 a 2 + 1 b 2 + 1 c 2 = 3 ⇔ 1 a 2 + 1 b 2 + 1 c 2 = 1 3

Ta luôn có bất đẳng thức a 2 + b 2 + c 2 + 1 a 2 + 1 b 2 + 1 c 2 ≥ 9  với  a , b , c > 0.

Dấu bằng khi  a = b = c = 3

Ta có V O . A B C = O A . O B . O C 6 = a b c 6 = 27 6

hoặc  V O . A B C = d O , α . S A B C 3 ⇔ S A B C = 9 3 2 .