Trong không gian cho ba tia Ox,Oy,Oz đôi một vuông góc và các điểm A,B,C không trùng với O lần lượt thay đổi trên các tia Ox,Oy,Oz và luôn thoả mãn điều kiện: tỉ số giữa diện tích tam giác ABC và thể tích khối tứ diện OABC bằng 3 2 Khối diện OABC có thể tích nhỏ nhất bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp:
Chứng minh khoảng cách từ O đến (ABC) không đổi.
Cách giải:
ta có
Ta sẽ chứng minh OK không đổi, khi đó mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính OK
Xét tam giác vuông OCK có
Vậy mặt phẳng (ABC) luôn tiếp xúc với mặt cầu tâm O bán kính 2
Vậy mặt phẳng (ABC) luôn tiếp xúc mặt cầu tâm O, bán kính R = 2.
Đáp án A
Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0. Phương trình của mặt phẳng (P) là:
Suy ra: a = b = c = 6. Vậy có một mặt phẳng (P) thỏa mãn bài toán.
Đáp án B.
Mặt cầu S : x 2 + y 2 + z 2 = 3
có tâm O 0 ; 0 ; 0 và bán kính R = 3
Giả sử A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a , b , c > 0 ⇒ Phương trình mặt phẳng α là: x a + y b + z c − 1 = 0
Để ý rằng O A 2 + O B 2 + O C 2 = 27 ⇔ a 2 + b 2 + c 2 = 27 và vì α tiếp xúc mặt cầu S :
⇒ d O , α = R = 3 ⇔ 0 a + 0 b + 0 c − 1 1 a 2 + 1 b 2 + 1 c 2 = 3 ⇔ 1 a 2 + 1 b 2 + 1 c 2 = 1 3
Ta luôn có bất đẳng thức a 2 + b 2 + c 2 + 1 a 2 + 1 b 2 + 1 c 2 ≥ 9 với a , b , c > 0.
Dấu bằng khi a = b = c = 3
Ta có V O . A B C = O A . O B . O C 6 = a b c 6 = 27 6
hoặc V O . A B C = d O , α . S A B C 3 ⇔ S A B C = 9 3 2 .