Cho dãy số x n xác định bởi:
x 1 > 0 3 n + 2 x n + 1 2 = 2 n + 1 x n + 1 2 + n + 4 ∀ n ≥ 21
Hãy tìm l i m x n
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)
\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}+\dfrac{2}{n+2}\right)\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{n+1+1}=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}\right)\)
Đặt \(u_n-\dfrac{3}{n+1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{3}{2}=-\dfrac{1}{2}\\v_{n+1}=\dfrac{3}{2}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{3}{2}\)
\(\Rightarrow v_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}\)
\(\Rightarrow u_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}+\dfrac{3}{n+1}\)
bấm máy tính, dùng cách lập trình là được, còn CTTQ theo n thì khó đấy
Môn Máy tính cầm tay nha các bạn giải dùng mình
ai đúng ks cho
Ta có:
3 n + 2 x n + 1 2 = 2 n + 1 x n + 1 2 + n + 4 ∀ n ≥ 21
⇔ 3 n + 2 x n + 1 2 = 2 n + 1 x n + 1 2 - 2 n + 1 + 3 n - 2 , ∀ n ≥ 21 ⇔ 3 n + 2 x n + 1 2 - 1 = 2 n + 1 x n 2 - 1
Đặt y n = x n 2 - 1 . Khi đó
y n + 1 = 2 3 . n + 1 n + 2 y n
Suy ra
y n + 1 = 2 n + 1 3 n + 2 . 2 n 3 n + 1 = 2 3 n + 1 . 1 n + 2 y 1
hay l i m y n = 0 . Vậy l i m x n = 1
Đáp án cần chọn là B