K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Gọi là giao điểm của đồ thị hàm số (C) với trục Oy.

Khi đó ta có: 

Ta có:  

Vậy phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm là:

 

 

Chọn C

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

9 tháng 8 2019

Chọn đáp án D.

14 tháng 1 2019
29 tháng 4 2016

a. Ta có : \(y'=3x^2-6x+2\)

\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)

Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)

 

b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :

\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)

Vậy phương trình tiếp tuyến là :

 \(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)

 

c. PTHD giao điểm của (C) với Ox :

\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)

\(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)

\(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)

\(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)

5 tháng 10 2017

11 tháng 1 2019

Đáp án A

Ta có y ' = − 1 x + 1 2 ;   C ∩ O y = 0 ; 2 ⇒ y ' 0 = − 1  

Do đó PTTT là:  y = − x + 2

21 tháng 12 2018

Đáp án A

Gọi M 0 ; − 2  là giao điểm của (C) và trục tung.

Ta có: y ' = − 3 x 2 + 6 x + 1 ⇒ y 0 = 1.

Suy ra PTTT với (C) tại M 0 ; − 2 là:

y = x − 0 − 2 ⇔ y = x − 2.

15 tháng 7 2018

18 tháng 7 2018

Chọn D.

Gọi M là giao điểm của (C) với trục tung => M(0;-2)

Ta có:  

Phương trình tiếp tuyến tại điểm M: