Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
a. Ta có : \(y'=3x^2-6x+2\)
\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)
Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)
b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :
\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)
Vậy phương trình tiếp tuyến là :
\(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)
c. PTHD giao điểm của (C) với Ox :
\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)
* \(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)
* \(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)
* \(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)
Chọn D.
Gọi M là giao điểm của (C) với trục tung => M(0;-2)
Ta có:
Phương trình tiếp tuyến tại điểm M:
Cho x = 0 ta được y = 1.
Do đó, giao điểm của (C) với trục tung là A(0; 1).
y ' = 3 x 2 + 6 x + 3 ⇔ y ' ( 0 ) = 3
Phương trình tiếp tuyến tại điểm A là:
y= 3(x - 0) + 1 hay y = 3x + 1
Chọn B
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến \(\Delta\) cần tìm
Ta có : \(y'=3x^2-12x+9\Rightarrow y'\left(x_0\right)=3x^2_0-12x_0+9\)
Ta có : \(x_0=1;y_0=2;y'\left(x_0\right)=0\)
Phương trình tiếp tuyến là : \(y-2=0\left(x-1\right)\) hay y = 2
b) Ta có \(x_0=0\Rightarrow y_0=-2,y'\left(x_0\right)=9\)
Phương trình tiếp tuyến là :\(y+2=9\left(x-0\right)\) hay \(y=9x-2\)
c) Ta có \(x_0=-1\Rightarrow y_0=f\left(x_0\right)=-18;y'\left(x_0\right)=24\)
Phương trình tiếp tuyến là : \(y+18=24\left(x+1\right)\) hay \(y=24x+6\)
d) Ta có : \(y_0=6\Rightarrow x_0^3-6x^2_0+9x_0-2=-2\Leftrightarrow x_0^3-6x^2_0+9x_0=0\)
\(\Leftrightarrow x_0=0;x_0=3\)
* \(x_0=-1\) suy ra phương trình tiếp tuyến là : \(y=9x-2\)
* \(x_0=3\Rightarrow y_0=-2,y'\left(x_0\right)=0\), suy ra phương trình tiếp tuyến là : \(y=2\)
Vậy có 2 tiếp tuyến là \(y=9x-2;y=2\)
e) Ta có : \(y'=0\Leftrightarrow\)\(\begin{cases}x=1\\x=3\end{cases}\)\(y''=6x-12\)
\(y''\left(1\right)=-6< 0;y"\left(3\right)=6>0\)
Suy ra đồ thị (C) có điểm cực tiểu là \(A\left(3;-2\right)\); điểm cực đại là \(B\left(1;2\right)\)
Giả sử \(M\left(a;a^3-6a^2+9a-2\right),a\ne3;1\)
Phương trình đường thẳng AB : \(2x+y-4=0\)
Ta có : \(S_{SBM}=\frac{1}{2}AB.d\left(M;AB\right)=6\)
\(\Leftrightarrow\frac{1}{2}\sqrt{2^2+\left(-4\right)^2}.\frac{\left|2a+a^3-6a^2+9a-2-4\right|}{\sqrt{2^2+1}}=6\)
\(\Leftrightarrow\left|a^3-6a^2+11a-6\right|=6\Leftrightarrow\left[\begin{array}{nghiempt}a=0\Rightarrow M\left(0;-2\right)\\a=4\Rightarrow M\left(4;2\right)\end{array}\right.\)
* Phương trình tiếp tuyến với (C) tại điểm M(0;-2) là : \(y+2=y'\left(0\right)\left(x-0\right)\) hay \(y=9x-2\)
* Phương trình tiếp tuyến với (C) tại điểm M(4;2) là : \(y-2=y'\left(4\right)\left(x-4\right)\) hay \(y=9x-34\)
Chọn: D
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là:
Cho x = 0
Cho y = 0
∆ O A B c â n t ạ i O ⇔ O A = O B
Với x 0 = - 2
Gọi là giao điểm của đồ thị hàm số (C) với trục Oy.
Khi đó ta có:
Ta có:
Vậy phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm là:
Chọn C