Cho hình hộp đứng A B C D . A 1 B 1 C 1 D 1 có đáy ABCD là hình vuông cạnh 2a, đường thẳng D B 1 tạo với mặt phẳng ( B C B 1 C 1 ) góc 30 o . Tính thể tích khối hộp A B C D . A 1 B 1 C 1 D 1
A. a 3 3
B. a 3 2 3
C. 8 a 3 2
D. a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SO vuông góc (ABCD)
=>(SAC) vuông góc (ABCD)
b: AC vuông góc BD
BD vuông góc SO
=>BD vuông góc (SAC)
=>(SBD) vuông goc (SAC)
Lời giải:
Cạnh đáy: $\sqrt{25}=5$ (cm)
Chiều cao: $5.3=15$ (cm)
a. Diện tích xung quanh: $5.15.4=300$ (cm vuông)
Đáp án D
b. Độ dài đường chéo đáy: $\sqrt{5^2+5^2}=5\sqrt{2}$ (cm)
Độ dài đường chéo hình hộp:
$\sqrt{(5\sqrt{2})^2+15^2}=5\sqrt{11}$ (cm)
Đáp án D.
Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).
Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A.
Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A
Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.
Đáp án C
Hình chiếu vuông góc của D xuống mặt phẳng ( B C B 1 C 1 ) là điểm C. Theo đề bài, ta có D B 1 C ^ = 30 o
Do đó