Cho hình chóp S.ABC có SA = 8, SA vuông góc với đáy. Tam giác ABC vuông tại A, BC = 7. Tính bán kính của mặt cầu ngoại tiếp khối chóp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi M là trung điểm của BC. Suy ra M là tâm đường tròn ngoại tiếp tam giác vuông ABC. Kẻ đường thẳng D đi qua M và vuông góc với mặt phẳng (ABC), D chính là trục của đường tròn ngoại tiếp đa giác đáy.
Trong mặt phẳng chứa SA và D, dựng đường trung trực d của SA. d ∩ D = O
do đó O là tâm mặt cầu ngoại tiếp hình chóp SABC
Đáp án D
Gọi M là trung điểm của BC. Suy ra M là tâm đường tròn ngoại tiếp tam giác vuông ABC.
Kẻ đường thẳng Δ đi qua M và vuông góc với mặt phẳng (ABC), Δ chính là trục của đường tròn ngoại tiếp đa giác đáy.
Trong mặt phẳng chứa SA và Δ, dựng đường trung trực d của
Ta có S A ⊥ A B C A C ⊂ A B C
⇒ S A ⊥ A C
S A ⊥ A B C A B ⊥ B C
⇒ S B ⊥ B C . Tâm I của mặt cầu là trung điểm của cạnh huyền SC.
Bán kính: R = SI = S C 2
S A 2 + A C 2 2 = a 2 + a 2 + a 2 2 = a 3 2
Đáp án D
ĐÁP ÁN: D