Cho dãy số U n xác định bởi
U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 , n ≥ 1
Hãy tính tổng S = u 1 + u 2 + . . + u 2018 4 - 1
A. 2016
B. 2017
C. 2018
D. 2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Phương pháp: Tìm công thức số hạng tổng quát
Cách giải: Ta có:
u ( 1 ) = 1
u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1
u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2
u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3
. . .
u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016
⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153
\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}+\dfrac{2}{n+2}\right)\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{n+1+1}=\dfrac{3}{2}\left(u_n-\dfrac{3}{n+1}\right)\)
Đặt \(u_n-\dfrac{3}{n+1}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-\dfrac{3}{2}=-\dfrac{1}{2}\\v_{n+1}=\dfrac{3}{2}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(\dfrac{3}{2}\)
\(\Rightarrow v_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}\)
\(\Rightarrow u_n=-\dfrac{1}{2}\left(\dfrac{3}{2}\right)^{n-1}+\dfrac{3}{n+1}\)
\(u_{n+1}=\dfrac{2}{3}u_n+\dfrac{2}{3}\Rightarrow u_{n+1}-2=\dfrac{2}{3}\left(u_n-2\right)\)
Đặt \(u_n-2=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-2=1\\v_{n+1}=\dfrac{2}{3}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(q=\dfrac{2}{3}\Rightarrow v_n=1.\left(\dfrac{2}{3}\right)^{n-1}=\left(\dfrac{2}{3}\right)^{n-1}\)
\(\Rightarrow u_n=v_n+2=\left(\dfrac{2}{3}\right)^{n-1}+2\)
Ta có:
U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 = 1 n n 4 + n n + 1 4 1 n + 1 n 4 + n + 1 n + 1 4 = 1 n n 4 + n + 1 4 1 n + 1 n 4 + n + 1 4 = 1 n + n + 1 1 n 4 + n + 1 4 = n + 1 4 - n 4 n + 1 + n 1 n + 1 - n = n + 1 4 - n 4 , n ≥ 1
Khi đó
S = u 1 + u 2 + . . + u 2018 4 - 1 = 2 4 - 1 4 + 3 4 - 2 4 + . . + 2018 4 4 - 2018 4 - 1 4 = 2018 4 4 - 1 = 2017
Đáp án B