K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Đáp án A

14 tháng 3 2019

Chọn A

6 tháng 2 2018

Đáp án C.

9 tháng 6 2019

Đáp án A

Ta có: lim x → + ∞ y = 0 ⇒  đồ thị hàm số có 1 tiệm cận ngang là y = 0 .

Để đồ thị hàm số có 3 tiệm cận thì phương trình : g x = x 2 − 2 m x + m + 2 = 0  có 2 nghiệm phân biệt

x 1 > x 2 ⇔ Δ ' = m 2 − m − 2 > 0 x 1 − 1 x 2 − 1 ≥ 0 x 1 − 1 + x 2 − 1 > 0 ⇔ m + 1 m − 2 > 0 x 1 x 2 − x 1 + x 2 + 1 ≥ 0 x 2 + x 2 > 2 ⇔ m + 1 m − 2 > 0 m + 2 − 2 m + 1 > 0 2 m > 2 ⇔ 3 ≥ m > 2.  

25 tháng 11 2018

27 tháng 12 2019

Đáp án C

Điều kiện: x≠2.

Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình

2 x x − 2 = x + m ⇔ 2 x x − 2 − x − m = 0 ⇔ 2 x − x 2 + 2 x − m x + 2 m x − 4 = 0 ⇔ − x 2 + 4 − m x + 2 m x − 2 = 0.

Để hai đồ thị hàm số giao nhau tại hai điểm phân biệt A,B ta có

4 − m 2 + 8 m > 0 g 2 ≠ 0 ⇔ m 2 + 16 > 0 − 4 + 8 − 2 m + 2 m ≠ 0

thỏa mãn với mọi m ∈ ℝ .

Theo bài ra ta có x A + x B + x O = 3 x A + m + x B + m + y O = 7 ⇔ 4 − m = 3 4 − m + 2 m = 5 ⇔ m = 1 .

Vậy m=1 thỏa mãn điều kiện đề bài.

5 tháng 4 2018

31 tháng 10 2018

11 tháng 10 2019

Suy ra y = 0 là đường tiệm cận ngang của đồ thị hàm số.

Do đó, để đồ thị hàm số đã cho có 4 đường thẳng tiệm cận thì phương trình x 3 - 3 x 2 + m - 1   =   0  có 3 nghiệm phân biệt

Chọn A