K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

A nha

11 tháng 4 2018

Suy ra đồ thị hàm số có 1 đường TCN y = 0.

Do đó đồ thị hàm số có đúng  2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2   -   2 x   +   4   =   0  có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.

Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.

Chọn A

1 tháng 9 2018

11 tháng 10 2019

Suy ra y = 0 là đường tiệm cận ngang của đồ thị hàm số.

Do đó, để đồ thị hàm số đã cho có 4 đường thẳng tiệm cận thì phương trình x 3 - 3 x 2 + m - 1   =   0  có 3 nghiệm phân biệt

Chọn A

14 tháng 9 2018

Chọn A.

Ta có 

nên đồ thị hàm số có một đường tiệm cận ngang y = 0.

nên không tồn tại giới hạn 

Do vậy đồ thị hàm số chỉ có một tiệm cận ngang y = 0.

Để đồ thị hàm số có bốn đường tiệm cận thì phương trình   (1) có ba nghiệm phân biệt.

Số nghiệm của (2) là giao điểm của đường thẳng y = 1 –m và đồ thị hàm số 

Xét hàm số Ta có 

Bảng biến thiên

Dựa vào bảng biến thiên, ta thấy (2) có ba nghiệm phân biệt ⇔ -4 < 1-m < 0  ⇔ 1 < m < 5

NV
7 tháng 8 2021

Với \(m=0\) ko thỏa mãn

Với \(m\ne0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)

5 tháng 4 2018

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Lời giải:
Theo đề thì cần tìm $m$ để đths đã cho cho TCĐ $x=2$

Điều này xảy ra khi mà $2x+2m=0$ tại $x=2$

$\Leftrightarrow m=-x=-2$

Đáp án B.