Gọi (P) là mặt phẳng đi qua điểm M 9 ; 14 , cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho biểu thức O A + O B + O C có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây?
A. 0 ; 9 ; 0 .
B. 6 ; 0 ; 0 .
C. 0 ; 0 ; 6 .
D. 0 ; 6 ; 0 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định chụp hình cơ cơ mà khá khó nhìn nên thoi đánh máy, bạn cố hiểu nhé
Từ H kẻ đường thẳng song song với ME cắt BC ở K
Từ K kẻ đường thẳng song song với EN cắt CD ở I
Nối I với H ta được mp (P) cần tìm
\(\left\{{}\begin{matrix}K\in HK\subset\left(HKI\right);K\in BC\subset\left(BCD\right)\\I\in KI\subset\left(HKI\right);I\in CD\subset\left(BCD\right)\end{matrix}\right.\Rightarrow\left(HKI\right)\cap\left(BCD\right)=KI\Rightarrow\left(P\right)\cap\left(BCD\right)=KI\)
Ta co \(\left\{{}\begin{matrix}H\in HK\subset\left(HKI\right);H\in AB\subset\left(ABD\right)\\KI//AB\end{matrix}\right.\)
=> Giao tuyen cua (P) va (ABD) la duong thang ua H va song song voi BD
Đáp án B.
Phương pháp:
Mặt phẳng α nhận i → 1 ; 0 ; 0 , O M → = 1 ; − 1 ; 2 là cặp vecto chỉ phương ⇒ n → = i → ; O M → là một vecto pháp tuyến của α
Cách giải:
α là mặt phẳng đi qua M 1 ; − 1 ; 2 và chứa trục Ox ⇒ α nhận i → 1 ; 0 ; 0 , O M → = 1 ; − 1 ; 2 là cặp vecto chỉ phương ⇒ n → = i → ; O M → = 0 ; − 2 ; − 1 là một vecto pháp tuyến của α .
α : 0. x − 0 − 2. y − 0 − 1 z − 0 = 0 ⇔ 2 y + z = 0
Dễ dàng kiểm tra N 2 ; 2 ; − 4 ∈ α
Đáp án D.
Do (P) cắt Ox; Oy; Oz lần luợt tại A,B, C.
Gọi A a ; 0 ; 0 ; B 0 ; b ; 0 ; C 0 ; 0 ; c a ; b ; c > 0
Khi đó
A B C : x a + y b + z c = 1 ; O A + O B + O C = a + b + c
(P) qua M 9 ; 1 ; 4 ⇒ 9 a + 1 b + 4 c = 1
Áp dụng BĐT: x + y + z a 2 x + b 2 y + c 2 z ≥ a + b + c 2
ta có: a + b + c 9 a + 1 b + 4 c ≥ 3 + 1 + 2 2 = 36
Do đó O A + O B + O C = a + b + c ≥ 36
Dấu bằng xảy ra
⇔ 9 a 2 = 1 b 2 = 4 c 2 9 a + 1 b + 4 c = 1 ⇔ a = 18 ; b = 6 ; c = 12 ⇒ A B C : x 18 + y 6 + z 12 = 1.