Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, đường cao S H = a 3 3 . Tính góc giữa cạnh bên và mặt đáy của hình chóp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi H là trọng tâm tam giác ABC, khi đó
Góc giữa cạnh bên và mặt đáy là góc
\(+\) vì \(SH\perp\left(ABC\right)\) và \(AN\subset\left(ABC\right)\Rightarrow SH\perp AN\) hay \(\Rightarrow SH\perp AH\)
\(\Rightarrow\) \(AH\) là hình chiếu vuông góc của \(SA\) lên \(\left(ABC\right)\) \(\Rightarrow\left(SA,\left(ABC\right)\right)=\left(SA,AH\right)=\widehat{SAH}\)
\(+\) gọi \(M,N\) lần lượt là t/điểm \(AC,BC\)
vì \(\Delta ABC\) là tam giác đều cạnh \(a\) nên dễ tính được : \(AN=\dfrac{a\sqrt{3}}{2}\)
từ giả thiết , suy ra \(H\) là trọng tâm \(\Delta ABC\)
\(\Rightarrow\) \(AH=\dfrac{2}{3}AN=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)
\(+\) áp dụng hệ thức lược trong tam giác \(SHA\) vuông tại \(H\) , có :
\(tan\widehat{SAH}\) \(=\dfrac{SH}{AH}=\dfrac{a}{\dfrac{a\sqrt{3}}{3}}=\sqrt{3}\Rightarrow\widehat{SAH}\) \(=60^o\)
Đáp án A
Ta có: A H = 2 3 a 2 − a 2 2 = a 3 3
S A = A H cos 60 0 = a 3 3 1 2 = 2 a 3
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\)
\(\Rightarrow\widehat{SAO}=60^0\Rightarrow AO=SA.cos60^0=a\)
\(R=a;l=2a\Rightarrow h=SO=\sqrt{\left(2a\right)^2-a^2}=a\sqrt{3}\)
\(V=\dfrac{1}{3}\pi R^2h=\dfrac{\sqrt{3}}{3}\pi a^3\)
a. \(OC=\dfrac{2}{3}.2a.\dfrac{\sqrt{3}}{2}=\dfrac{2a\sqrt{3}}{3}\)
\(\Rightarrow tan\widehat{SCO}=\dfrac{SO}{OC}=\dfrac{3\sqrt{3}}{2}\) \(\Rightarrow\widehat{SCO}\simeq69^0\)
b. Gọi M là trung điểm BC \(\Rightarrow BC\perp\left(SAM\right)\)
Trong mp (SAM), từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow\widehat{ASM}\) là góc giữa SA và (SBC)
\(SA=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{93}}{3}\)
\(SM=\sqrt{SA^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{2a\sqrt{21}}{3}\)
\(AM=a\sqrt{3}\)
Áp dụng định lý hàm cos:
\(cos\widehat{ASM}=\dfrac{SA^2+SM^2-AM^2}{2SA.MM}=...\)