Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi H là trọng tâm tam giác ABC, khi đó
Góc giữa cạnh bên và mặt đáy là góc
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\)
\(\Rightarrow\widehat{SAO}=60^0\Rightarrow AO=SA.cos60^0=a\)
\(R=a;l=2a\Rightarrow h=SO=\sqrt{\left(2a\right)^2-a^2}=a\sqrt{3}\)
\(V=\dfrac{1}{3}\pi R^2h=\dfrac{\sqrt{3}}{3}\pi a^3\)
Đáp án B
Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được:
Đáp án: C.
Hướng dẫn giải:
Gọi H là tâm của tam giác ABC, M là trung điểm của AB.
Dễ dàng xác định
Đặt S H = x ⇒ H M = x ; S M = x 2
⇒ C M = 3 H M = 3 x
⇒ A B = 3 C M 3 = 2 x 3
⇒ A M = x 3
⇒ V S . A B C = S H . S A B C 3 = 15 a 3 25
Đáp án D
Gọi H là tâm của tam giác ABC. Trong (SBC), kẻ SI vuông góc BC.
Do góc giữa mặt bên và mặt đáy là 600 suy ra
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và
Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Vậy
Hình nón nội tiếp có đường sinh là :
Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là: