Tam giác ABC vuông tại A, AB = a, AC = 3a. Trên cạnh AC lấy các điểm D, E sao cho AD = DE = EC
Chứng minh DE/DB = DB/DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: ΔABD=ΔAED
=>góc AED=góc ABD=90 độ
c: Xét ΔAEF vuông tại A và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
d: DB=DE
mà DE<DC
nên DB<DC
a: Xét tứ giác ABCE có
D là trung điểm của AC
D là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AB//CE
a) Xét tam giác ABD và tam giác AED có
AB=AE
BAD=DAE( vì AD là phân giác của BAC)
Cạnh AD chung
=> tam giác ABD= tam giác AED( c.g.c)
=>DB=DE
b) Có tam giác ABD= tam giác AED
=> ABD=AED
=>DBK=DEC( kề bù với 2 góc bằng nhau)
Xét tam giác BDK và tam giác EDC
BD=DE
BDK=EDC ( 2 góc đối đỉnh)
DBK=DEC
=> tam giác BDK= tam giác EDC ( g.c.g)
c) Tam giác BDK=tam giác EDC
=>DBK=DEC
Có DBK>C( DBK là góc ngoài tam giác ABC)
=>DEC>C
=>DC>DE
Mà DE=DE
=>DC>DB