Chứng minh rằng: Trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ta có
a(a+2)=a2+2a
(a+1)2=a2 +2a +1
Mà a2+2a<a2+2a+1
Do đó :
a(a+1)< (a+1)2
b/
Ta có : 1,2,3 là ba số liên tiếp do đó ta sẽ có là : 22=4 1×3=3
Do đó trong ba số nguyên liên tiếp thì bình phương của số đứng giữa sẽ lớn hơn tích của các số còn lại
# nhớ tick cho mk nha# ☺☺☺
Gọi 3 số nguyên liên tiếp lần lượt là x-1; x ; x + 1
Ta có
( x - 1 )( x + 1 ) = x2 + x - x - 1 = x2 - 1
Vì 1 > 0 => x2 - 1 < x2
=> ( x - 1 )( x + 1 ) < x2 ( đpcm )
Gọi 3 số liên tiếp là x-1 ; x ; x-1
Ta có: (x-1)*(x+1) = x2 -x + x-1 = x2 - 1
Mà x2 > x2-1 một đơn vị
=> trong 3 số ......(ghi tiếp cái đề)
gọi 3 số tự nhiên liên tiếp là x-1 ; x ; x+1
ta có ( x-1) * (x+1) = x2 -x + x -1 = x2 -1
mà x2 > x2 -1 một đơn vị
=> điều phải chứng minh
Gọi 3 số nguyên liên tiếp là x,x+1,x+2
Ta có : *) x.(x+2)=x2+2x
*) (x+1)2=(x+1)(x+1)=x(x+1)+(x+1)=x2+x+x+1=x2+2x+1
Suy ra x2+2x+1 > x2+2x
=> (x2+2x+1)-(x2+2x) = 1
Vậy (x+1)2 lớn hơn x.(x+2) là 1
Gọi 3 số liên tiếp là : x−1;x;x+1(x∈Z)x-1;x;x+1(x∈Z)
Ta có: (x−1).(x+1)=x.(x−1)+x−1(x-1).(x+1)=x.(x-1)+x-1
=x2−x+x−1=x2-x+x-1
=x2−1<x2=x2-1<x2
⇒x2>(x−1).(x+1)⇒x2>(x-1).(x+1)là 1 đơn vị
⇒⇒ Trong 3 số liên tiếp thì bình phương của số ở giữa hơn tích của 2 số kia đúng 1 đơn vị ( Điều phải chứng minh )
Gọi 3 số tự nhiên liên tiếp là a-1;a;a+1
Ta có (a-1)(a+1) = a(a-1)+a-1 = a2-a+a-1 =a2-1<a2
=> a2 > (a-1)(a+1) là 1 đơn vị
=> trong ba số liên tiếp thì bình phương của số ở giữa hơn tích của 2 số kia đúng 1 đơn vị.
=> Đpcm
Gọi a, a + 1, a + 2 là ba số nguyên liên tiếp, ta có:
Theo kết quả câu a ta có: a(a + 2) < a + 1 2
Vậy trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.