K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

a/ ta có

a(a+2)=a2+2a

(a+1)2=a2 +2a +1

Mà a2+2a<a2+2a+1

Do đó :

a(a+1)< (a+1)2

b/

Ta có : 1,2,3 là ba số liên tiếp do đó ta sẽ có là : 22=4 1×3=3

Do đó trong ba số nguyên liên tiếp thì bình phương của số đứng giữa sẽ lớn hơn tích của các số còn lại

# nhớ tick cho mk nha# ☺☺☺

23 tháng 10 2018

Gọi a, a + 1, a + 2 là ba số nguyên liên tiếp, ta có:

Theo kết quả câu a ta có: a(a + 2) < a + 1 2

Vậy trong ba số nguyên liên tiếp thì bình phương số đứng giữa lớn hơn tích hai số còn lại.

10 tháng 11 2021

Gọi 3 số tự nhiên lt là \(a-1;a;a+1\left(a\in N\text{*}\right)\)

Ta có \(\left(a-1\right)\left(a+1\right)=a^2+a-a-1=a^2-1\)(đpcm)

Vậy ...

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

26 tháng 6 2018

ta có n(n+5)-(n-3)(n+2)

=  n2+5n-(n2-n-6)

=n2+5n-n2+n+6

= 6n-6

=6(n-1)

=> 6(n-1) chia hết cho 6

hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6

nhớ k giùm mình nha

25 tháng 6 2018

Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

Gọi 3 số tự nhiên liên tiếp là $a, a+1, a+2$

Ta có:

$(a+1)^2-a(a+2)=(a^2+2a+1)-(a^2+2a)=1$ (đpcm)

24 tháng 9 2018

vào câu hỏi tương tự nha bn

có đó

k mk nhé

~beodatmaytroi~

25 tháng 5 2017

a. Ta có:

\(\left(m+1\right)^2\)\(=m^2+2m+1\)

\(\left(m+1\right)^2\ge4m\Leftrightarrow m^2+2m+1\ge4m\)

\(\Leftrightarrow m^2+2m+1-4m\ge0\)

\(\Leftrightarrow m^2-2m+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (đúng \(\forall\) m)

Vậy \(\left(m+1\right)^2\ge4m\)

b. \(m^2+n^2+2\ge2\left(m+n\right)\)

\(\Leftrightarrow m^2+1+n^2+1\ge2m+2n\)

Ta có:

\(\left(m^2+1\right)^2\ge4m^2\) \(\Rightarrow m^2+1\ge2m\)

\(\left(n^2+1\right)^2\ge4n^2\Rightarrow n^2+1\ge2n\)