K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+) Ta có: OC = OA; CD = AB nên:

OC + CD = OA + AB hay OD = OB.

+) Xét ΔOAD và ΔOCB. Ta có:

OA = OC (gt)

∠O chung

OD = OB (chứng minh trên )

Suy ra: ΔOAD= ΔOCB (c.g.c)

15 tháng 6 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Suy ra: ∠D = ∠B(hai góc tương ứng)

Và ∠C1 =∠A1 (hai góc tương ứng)

Lại có: ∠C1+∠C2 =180°(hai góc kề bù)

Và ∠A1+∠A2=180°(hai góc kề bù)

Suy ra: ∠C2 =∠A2

Xét ΔKCD và ΔKAB, ta có:

∠B = ∠D (chứng minh trên )

CD=AB (gt)

∠C2 =∠A2 (chứng minh trên)

suy ra: ΔKCD= ΔKAB,(g.c.g)

=>KC=KA (hai cạnh tương ứng)

Xét ΔOCK và ΔOAK, ta có:

OC = OA (gt)

OK chung

KC = KA (chứng minh trên)

Suy ra: ΔOCK = ΔOAK (c.c.c)

=> ∠O1=∠O2̂(hai góc tương ứng)

Vậy OK là tia phân giác góc O

18 tháng 2 2018

Bạn ơi, phải là Kẻ AD và BC chứ ?

18 tháng 2 2018

uk , mk nhầm , xin lỗi . Kẻ AD và BC nha  mn !!

17 tháng 5 2017

Vì OA = AB = OC = CD

=> OD = OB

Xét \(\Delta OAD\)\(\Delta OCB\)có:

OA = OC (gt)

\(\widehat{O}\)(chung)

OD = OB (cmt)

Do đó: \(\Delta OAD=\Delta OCB\) (c-g-c)

=> \(\widehat{ODA}=\widehat{OBC}\) (2 cạnh tương ứng)

=> \(\widehat{OCB}=\widehat{OAD}\) (2 cạnh tương ứng)

\(\widehat{OCB}=\widehat{OAD}\)\(\widehat{OCB}+\widehat{DCB}=180^0\)(kề bù)

\(\widehat{OAD}+\widehat{DAB}=180^0\)(kề bù)

Do đó: \(\widehat{DAB}=\widehat{BCD}\)

Xét \(\Delta KAB\)\(\Delta KCD\)có:

\(\widehat{ODA}=\widehat{OBC}\)(cmt)

AB = CD (gt)

\(\widehat{CDK}=\widehat{ABK}\left(\widehat{ODA}=\widehat{OBC}\right)\)

Do đó: \(\Delta KAB=\Delta KCD\left(g-c-g\right)\)

=> CK = KA (2 cạnh tương ứng)

Xét \(\Delta OCK\)\(\Delta OAK\)có:

CK = KA(cmt)

OK (chung)

OA = OC (gt)

Do đó: \(\Delta OCK=\Delta OAK\left(c-c-c\right)\)

=> \(\widehat{COK}=\widehat{AOK}\) ( 2 góc tương ứng )

=> OK là tia phân giác \(\widehat{O}\)

14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

26 tháng 1 2018

Giải

a) Xét ∆OAD và ∆OCB, ta có:

OA = OC (gt)

\(\widehat{O}\):chung

OD = OB (gt)

Suy ra: ∆OAD = ∆OCB (c.g.c)

b) Ta có: ∆OAD = ∆OCB

Suy ra: \(\widehat{D}=\widehat{B}\) (hai góc tương ứng)

\(\widehat{C_1}=\widehat{A_1}\) (hai góc tương ứng)

Lại có: \(\widehat{C_1}+\widehat{C_2}=180^o\)(kề bù)

\(\widehat{A_1}+\widehat{A_2}\) = 180o (kề bù)

Suy ra: \(\widehat{C_2}=\widehat{A_2}\)

Xét ∆KCD và ∆KAB, ta có:

\(\widehat{D}=\widehat{B}\)(chứng minh trên)

CD = AB (gt)

\(\widehat{C_2}=\widehat{A_2}\) (chứng minh trên)

Suy ra: ∆KCD = ∆KAB (g.c.g) => KC = KA (hai cạnh tương ứng)

Xét ∆OCK = ∆OAK, ta có:

OC = OA (gt)

OK cạnh chung

KC = KA (chứng minh trên)

Suy ra: ∆OCK = ∆OAK (c.c.c) =>\(\widehat{O_1}=\widehat{O_2}\) (hai góc tương ứng)

Vậy OK là tia phân giác của góc O



14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

3 tháng 8 2016

A B C D 50

giả dụ ta có hình thang cân ABCD 

góc D=50o mà góc D= góc C

=> góc C= 500

Mà góc D + góc A=180o

=> góc A =180o-50o=130o

chứng minh tương tự ta cũng có góc B=1300

3 tháng 8 2016

O A B C D

Ta có : OA=OC;OB=OD

Theo dấu hiệu nhận biết số 5 thì tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường là hình bình hành. 

VẬy tứ giác ABCD là hình bình hành