Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân) (2)
ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1
⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ACBD là hình thang cân.
giả dụ ta có hình thang cân ABCD
góc D=50o mà góc D= góc C
=> góc C= 500
Mà góc D + góc A=180o
=> góc A =180o-50o=130o
chứng minh tương tự ta cũng có góc B=1300
Ta có : OA=OC;OB=OD
Theo dấu hiệu nhận biết số 5 thì tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường là hình bình hành.
VẬy tứ giác ABCD là hình bình hành
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
Hai đoạn thẳng AB và CD cắt nhau tại 0. Biết rằng OA = OC, OB = OD. Tứ giác ABCD là hình gì ? Vì sao
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ ∠ A 1 = ( 180 0 - ∠ (AOC) ) / 2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ ∠ B 1 = ( 180 0 - ∠ (BOD) )/2 (tính chất tam giác cân) (2)
∠ (AOC) = ∠ (BOD) (đối đỉnh) (3)
Từ (1), (2), (3) suy ra: ∠ A 1 = ∠ B 1
⇒ AC // BD (vì có cặp góc ở vị tri so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ABCD là hình thang cân.
Có : AB cắt Cd tại O
OA=OC,OB=OD
=> Tứ giác ABCD là hình thang
Muốn chứng minh hình thang cân chứng minh:
- Hai cạnh bên bằng nhau
- Hai đường chéo bằng nhau
cần chứng minh AB và CD là 2 đường chéo và 2 góc tương ứng kề đáy
Ta có: OA = OC (gt)
⇒ ∆ OAC cân tại O
⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân) (1)
OB = OD (gt)
⇒ ∆ OBD cân tại O
⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân) (2)
ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh) (3)
Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1
⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)
Suy ra: Tứ giác ACBD là hình thang
Ta có: AB = OA + OB
CD = OC + OD
Mà OA = OC, OB = OD
Suy ra: AB = CD
Vậy hình thang ACBD là hình thang cân.