K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

18 tháng 8 2016

Hình thang cân, hình chữ nhật, hình vuông.

18 tháng 8 2016

tu biên tự diển hả

3 tháng 8 2016

A B C D 50

giả dụ ta có hình thang cân ABCD 

góc D=50o mà góc D= góc C

=> góc C= 500

Mà góc D + góc A=180o

=> góc A =180o-50o=130o

chứng minh tương tự ta cũng có góc B=1300

3 tháng 8 2016

O A B C D

Ta có : OA=OC;OB=OD

Theo dấu hiệu nhận biết số 5 thì tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường là hình bình hành. 

VẬy tứ giác ABCD là hình bình hành

25 tháng 8 2019

         A B C D O

Xét tam giác ABC và BAD có :

AB : chung 

\(\widehat{BAD}=\widehat{ABC}\)

AD = BC    

( ABCD là hình thang cân ) 

\(\Rightarrow\Delta ABC=\Delta BAD\)

\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)

\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB

21 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ ∠ A 1 = ( 180 0  - ∠ (AOC) ) / 2 (tính chất tam giác cân) (1)

OB = OD (gt)

⇒  ∆ OBD cân tại O

⇒  ∠ B 1 = ( 180 0  -  ∠ (BOD) )/2 (tính chất tam giác cân) (2)

∠ (AOC) =  ∠ (BOD) (đối đỉnh) (3)

Từ (1), (2), (3) suy ra:  ∠ A 1  =  ∠ B 1

⇒ AC // BD (vì có cặp góc ở vị tri so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ABCD là hình thang cân.

23 tháng 8 2017

Có : AB cắt Cd tại O

       OA=OC,OB=OD

=> Tứ giác ABCD là hình thang

23 tháng 8 2017

Muốn chứng minh hình thang cân chứng minh:

- Hai cạnh bên bằng nhau

- Hai đường chéo bằng nhau

cần chứng minh AB và CD là 2 đường chéo và 2 góc tương ứng kề đáy