CMR: Diện tích của một tứ giác luôn nhỏ hơn hoặc bằng tích 2 đường chéo của nó.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
MH
2
DT
16 tháng 1 2022
c/m1:
gọi O là giao điểm của 2 đường chéo trong tứ giác , gọi tên của tứ giác đó là tứ giác ABCD:
Trong Δ OAB có :
OA+OB>AB
Trong Δ OBC có :
OB+OC>BC
Trong Δ OAD có :
OD+OA>AD
Trong Δ OCD có :
OC+OD>CD
Ta có 4 bất đẳng thức:
2OB+2OC+2OA+2OD<AB+BC+CD+DA
<=>2BD+2AC>1/2p
<=>BD+AC> 1/2p
Vậy tổng 2 đường chéo trong 1 tứ giác luôn lớn hơn nửa chu vi (đpcm)
p : là nửa chu vi
c/m2:
Vẫn sử dụng tứ giác ABCD
do AC<p và BD<p
<=>AC+BD<2p
vậy tổng 2 đường chéo nhỏ hơn chu vi của tứ giác(đpcm)
GT
16 tháng 1 2022
Đúng rồi, có sai chỗ: 2OB+2OC+2OA+2OD<AB+BC+CD+DA
chỗ đó dùng dấu > này chứ.
Bạn nối hai đường chéo và vẽ 2 đường vuông góc từ 2 đỉnh đối nhau xuống cùng 1 đường chéo
Tích của đường vuông góc đo với đường chéo chia 2 là S tam giác
Tổng S 2 tâm giác đó là S tứ giác
Đường chéo còn lại chia làm 2 phần và mỗi phần đều dài hơn hoặc bằng 2 đường vuông góc
(bằng <=> 2 đường chéo vuông góc)
rồi suy luận tiếp đi
Nguồn: Search
khó quá k bít làm